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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation 

and Development (OECD) to implement an international energy programme. A basic aim of the IEA is to foster international co-

operation among the 30 IEA participating countries and to increase energy security through energy research, development and 

demonstration in the fields of technologies for energy efficiency and renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive portfolio of 

Technology Collaboration Programmes (TCPs). The mission of the IEA Energy in Buildings and Communities (IEA EBC) TCP is to 

support the acceleration of the transformation of the built environment towards more energy efficient and sustainable buildings and 

communities, by the development and dissemination of knowledge, technologies and processes and other solutions through 

international collaborative research and open innovation. (Until 2013, the IEA EBC Programme was known as the IEA Energy 

Conservation in Buildings and Community Systems Programme, ECBCS.) 

The high priority research themes in the EBC Strategic Plan 2019-2024 are based on research drivers, national programmes within 

the EBC participating countries, the Future Buildings Forum (FBF) Think Tank Workshop held in Singapore in October 2017 and a 

Strategy Planning Workshop held at the EBC Executive Committee Meeting in November 2017. The research themes represent a 

collective input of the Executive Committee members and Operating Agents to exploit technological and other opportunities to save 

energy in the buildings sector, and to remove technical obstacles to market penetration of new energy technologies, systems and 

processes. Future EBC collaborative research and innovation work should have its focus on these themes. 

At the Strategy Planning Workshop in 2017, some 40 research themes were developed. From those 40 themes, 10 themes of special 

high priority have been extracted, taking into consideration a score that was given to each theme at the workshop. The 10 high priority 

themes can be separated in two types namely 'Objectives' and 'Means'. These two groups are distinguished for a better understanding 

of the different themes.  

 

Objectives - The strategic objectives of the EBC TCP are as follows: 

‒ reinforcing the technical and economic basis for refurbishment of existing buildings, including financing, engagement of 

stakeholders and promotion of co-benefits; 

‒ improvement of planning, construction and management processes to reduce the performance gap between design stage 

assessments and real-world operation; 

‒ the creation of 'low tech', robust and affordable technologies; 

‒ the further development of energy efficient cooling in hot and humid, or dry climates, avoiding mechanical cooling if possible; 

‒ the creation of holistic solution sets for district level systems taking into account energy grids, overall performance, business 

models, engagement of stakeholders, and transport energy system implications. 

 

Means - The strategic objectives of the EBC TCP will be achieved by the means listed below: 

‒ the creation of tools for supporting design and construction through to operations and maintenance, including building energy 

standards and life cycle analysis (LCA); 

‒ benefitting from 'living labs' to provide experience of and overcome barriers to adoption of energy efficiency measures; 

‒ improving smart control of building services technical installations, including occupant and operator interfaces; 

‒ addressing data issues in buildings, including non-intrusive and secure data collection; 

‒ the development of building information modelling (BIM) as a game changer, from design and construction through to operations 

and maintenance. 

 

The themes in both groups can be the subject for new Annexes, but what distinguishes them is that the 'objectives' themes are final 

goals or solutions (or part of) for an energy efficient built environment, while the 'means' themes are instruments or enablers to reach 

such a goal. These themes are explained in more detail in the EBC Strategic Plan 2019-2024. 

The Executive Committee 

Overall control of the IEA EBC Programme is maintained by an Executive Committee, which not only monitors existing projects, but 

also identifies new strategic areas in which collaborative efforts may be beneficial. As the Programme is based on a contract with the 

IEA, the projects are legally established as Annexes to the IEA EBC Implementing Agreement. At the present time, the following 
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projects have been initiated by the IEA EBC Executive Committee, with completed projects identified by (*) and joint projects with the 

IEA Solar Heating and Cooling Technology Collaboration Programme by (☼): 

 

Annex 1: Load Energy Determination of Buildings (*) 

Annex 2: Ekistics and Advanced Community Energy Systems (*) 

Annex 3: Energy Conservation in Residential Buildings (*) 

Annex 4: Glasgow Commercial Building Monitoring (*) 

Annex 5: Air Infiltration and Ventilation Centre  

Annex 6: Energy Systems and Design of Communities (*) 

Annex 7: Local Government Energy Planning (*) 

Annex 8: Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9: Minimum Ventilation Rates (*) 

Annex 10: Building HVAC System Simulation (*) 

Annex 11: Energy Auditing (*) 

Annex 12: Windows and Fenestration (*) 

Annex 13: Energy Management in Hospitals (*) 

Annex 14: Condensation and Energy (*) 

Annex 15: Energy Efficiency in Schools (*) 

Annex 16: BEMS 1- User Interfaces and System Integration (*) 

Annex 17: BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18: Demand Controlled Ventilation Systems (*) 

Annex 19: Low Slope Roof Systems (*) 

Annex 20: Air Flow Patterns within Buildings (*) 

Annex 21: Thermal Modelling (*) 

Annex 22: Energy Efficient Communities (*) 

Annex 23: Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24: Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25: Real time HVAC Simulation (*) 

Annex 26: Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27: Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28: Low Energy Cooling Systems (*) 

Annex 29: ☼ Daylight in Buildings (*)  

Annex 30: Bringing Simulation to Application (*) 

Annex 31: Energy-Related Environmental Impact of Buildings (*) 

Annex 32: Integral Building Envelope Performance Assessment (*) 

Annex 33: Advanced Local Energy Planning (*) 

Annex 34: Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35: Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36: Retrofitting of Educational Buildings (*) 

Annex 37: Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38: ☼ Solar Sustainable Housing (*)  

Annex 39: High Performance Insulation Systems (*) 

Annex 40: Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*) 

Annex 43: ☼ Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: ☼ Towards Net Zero Energy Solar Buildings (*)  

Annex 53: Total Energy Use in Buildings: Analysis and Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation and Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance and Cost (RAP-RETRO) (*) 

Annex 56: Cost Effective Energy and CO2 Emissions Optimization in Building Renovation (*) 

Annex 57: Evaluation of Embodied Energy and CO2 Equivalent Emissions for Building Construction (*) 
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Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements (*) 

Annex 59: High Temperature Cooling and Low Temperature Heating in Buildings (*) 

Annex 60: New Generation Computational Tools for Building and Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62: Ventilative Cooling (*) 

Annex 63: Implementation of Energy Strategies in Communities (*) 

Annex 64: LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles (*) 

Annex 65: Long-Term Performance of Super-Insulating Materials in Building Components and Systems (*) 

Annex 66: Definition and Simulation of Occupant Behavior in Buildings (*) 

Annex 67: Energy Flexible Buildings (*) 

Annex 68: Indoor Air Quality Design and Control in Low Energy Residential Buildings (*) 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings (*) 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale (*) 

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements (*) 

Annex 72: Assessing Life Cycle Related Environmental Impacts Caused by Buildings (*) 

Annex 73: Towards Net Zero Energy Resilient Public Communities (*) 

Annex 74: Competition and Living Lab Platform (*) 

Annex 75: Cost-effective Building Renovation at District Level Combining Energy Efficiency and Renewables (*) 

Annex 76: ☼ Deep Renovation of Historic Buildings Towards Lowest Possible Energy Demand and CO2 Emissions (*) 

Annex 77: ☼ Integrated Solutions for Daylight and Electric Lighting (*) 

Annex 78: Supplementing Ventilation with Gas-phase Air Cleaning, Implementation and Energy Implications 

Annex 79: Occupant-Centric Building Design and Operation (*) 

Annex 80: Resilient Cooling of Buildings (*) 

Annex 81: Data-Driven Smart Buildings 

Annex 82: Energy Flexible Buildings Towards Resilient Low Carbon Energy Systems 

Annex 83: Positive Energy Districts 

Annex 84: Demand Management of Buildings in Thermal Networks 

Annex 85: Indirect Evaporative Cooling 

Annex 86: Energy Efficient Indoor Air Quality Management in Residential Buildings 

Annex 87: Energy and Indoor Environmental Quality Performance of Personalised Environmental Control Systems 

Annex 88: Evaluation and Demonstration of Actual Energy Efficiency of Heat Pump Systems in Buildings 

Annex 89: Ways to Implement Net-zero Whole Life Carbon Buildings 

Annex 90: EBC Annex 90 / SHC Task 70 Low Carbon, High Comfort Integrated Lighting 

Annex 91: Open BIM for Energy Efficient Buildings 

Annex 92: Smart Materials for Energy-Efficient Heating, Cooling and IAQ Control in Residential Buildings 

Annex 93: Energy Resilience of the Buildings in Remote Cold Regions 

Annex 94: Validation and Verification of In-situ Building Energy Performance Measurement Techniques 

Annex 95: Human-centric Building Design and Operation for a Changing Climate 

Annex 96: Grid Integrated Control of Buildings 

 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - HVAC Energy Calculation Methodologies for Non-residential Buildings (*) 

Working Group - Cities and Communities 

Working Group - Building Energy Codes 
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Summary 

IEA-EBC Annex 81 investigated emerging ‘Artificial Intelligence’ software tools for optimising energy consump-

tion, in digitally enabled ‘Smart Buildings’. These software tools include automated Fault Detection and Diagnosis 

(FDD), Model Predictive Control (MPC) and Buildings to Grid (B2G) applications.  This work was initiated by the 

Mission Innovation ‘Affordable Heating and Cooling Innovation Challenge’.  

These technologies can reduce energy waste by up to 40%.  They also provide ‘dispatchability’ (sometimes 

called ‘flexibility’).  Dispatchability is a critical resource for backing up variable renewable energy generation 

sources, as part of the global clean energy transition. 

The US Department of Energy (2021) estimates that ‘Grid-Interactive Efficient Buildings’ (GEBs) have the po-

tential to reduce total U.S. electricity supply costs by 2 to 6% (saving the US power system $100-200 billion by 

2040) and helping to reduce CO2 emissions by around 6% (saving around 80 MT/year of CO2 emissions). 

In addition to energy bill savings for building owners, digitalisation is a critical enabler (at energy system-level) 

for matching energy supply and demand.  It can also underpin the implementation of government policies aimed 

at improving the efficiency of energy markets. The IEA identified ‘Leveraging digital innovation to enhance system-

wide efficiency’ as one of its ten strategic principles for achieving the COP28 goals. 

Recommendations For Policy Makers 

Consistent with the IEA Net Zero by 2050 Scenario, policy makers should set the following ‘digital-ready’ targets, 

in order to reduce consumer energy bills by 20%.  

• All new buildings to be flexible resources by 2030; and  

• 85% of all existing buildings to be retrofitted by 2050 with efficient and grid-interactive appliances.   

Numerous roadmaps agree that achieving these targets will require government to play a coordinating role, to 

overcome industry barriers and support adoption of digitalisation in buildings.  

Consultation with industry identified key actions that government can take.  These actions are illustrated in the 

Annex 81 ‘Policy Package for Energy Optimisation in Buildings through Digitalisation’ (see Figure below). They 

are summarised as follows. 

1. Interoperability and data access barriers:  

Government should publish guides with clear terminology to describe best practice digitalisation concepts 

(Action 1.2).  Standardisation begins with the use of common language.   

• These concepts should be enshrined as standards and/or other requirements or specifications.  

o Industry adoption can then be driven by including these requirements in construction codes 

(Action 2.1), certification/rating schemes (Action 2.2), incentive schemes (Action 2.3) and/or 

mandatory equipment specifications (Action 8.2).  

o Relevant rating schemes, incentive schemes and/or markets will require certain data inputs.  

Regulatory support should be given, to ensure that these data inputs are available as standard 

(Action 6.1, Action 6.2), and access is not subject to commercial and/or privacy constraints. 

o Government operated data platforms (linked to relevant government schemes) can play a key 

role in supporting efficient and scalable collection of standard data from industry (Action 6.3, 

Action 8.5). 

• Government can play a key role in driving critical mass industry adoption of standards (and relevant 

voluntary schemes) by, for example, adopting digital ready clauses for its own buildings (e.g. through 

‘green-leases’ (Action 3.3)).  
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2. Economic and first cost sensitivity barriers:   

Government should support competitive markets that can drive efficient energy management outcomes 

through digitalisation.  Artificial barriers that prevent demand management resources from participating in 

energy markets should be removed (Action 8.1).  

• Certificate Schemes (Action 5.2, Action 8.3) are a proven policy mechanism with high benefit to cost 

ratios.  Certificate schemes should be designed to achieve a target amount of digitally-enabled DER 

in Grid Interactive Buildings, as the intended policy outcome (Action 8.4)   

o Energy management incentive schemes will often need measurement and verification (M&V) 

to quantify and reward actions, in a performance-based way.  Government-approved, digitally-

automated M&V tools should be provided to industry - to streamline participation in markets 

and schemes (Action 5.3). 

• While industry felt that digitalisation products and services can already compete without subsidies, 

industry adoption could be accelerated (in the short term) through direct incentives (Action 5.1, 

Action 2.3) and through mandated adoption in government buildings (Action 3.3). 

3. Workforce skills and capacity barriers:  

Government should develop an education and training agenda for improving digital skills in the property 

industry (Action 7.1, Action 7.2).   

• Government can help improve focus on these skills by establishing digitalisation centres of 

excellence in both academia (Action 4.1) and government facilities management (Action 3.1). 

4. Information and implementation complexity barriers:  

Government should fund case-studies and pilots (Action 4.2, Action 5.1).   

• Funding for case studies should be contingent on thorough knowledge-sharing using independent 

research bodies (Action 4.1).   

o Knowledge should be consolidated and shared through established professional channels, with 

media tailored to the needs of decision makers (Action 1.1).   

o Where possible, knowledge should be synthesised into relevant guides and standards that de-

risk implementation (Action 1.2). 

• Government can play a key role in creating information resources by investing in digitalisation 

technology across its own building portfolio (Action 3.2) and sharing the resulting knowledge. 

o Government should recruit a specialist centralised team with digitalisation expertise (Action 

3.1), to support (de-risk) implementation in its own buildings, and to ensure that there is 

appropriate expert knowledge sharing. 

Examples of government initiatives that have enshrined various of these recommendations are provided in 

Section 6. 

Background and context 

Data quality and data management practices are critical 

Access to data is core to the success of data-driven AI applications in smart buildings. This requires appro-

priate digital infrastructure in a building, and attention to data governance. Stakeholder interviews identified 

data quality and data management as one of the most critical industry issues. 
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Annex 81 participants recommend digital infrastructure (the software/hardware stack required for deploying 

AI software services in non-residential buildings) that includes the following four ‘layers’: (i) Device & Systems 

Layer, (ii) Network Layer, (iii) Data Layer and (iv) Applications Layer.  

 

The purpose of this software/hardware stack is to create a highly flexible digital infrastructure, that gives the 

building owner control over their digital resources (‘data sovereignty’) and gives better access to 3rd party 

software services (choice). 

Core to the success of this digital infrastructure is interoperability. Interoperability issues relate to both (i) 

device-level communications (i.e. avoiding proprietary communication protocols) and (ii) the extent of infor-

mational/semantic context that is attached to the sources of data (i.e. ensuring sufficient metadata is available 

to give meaning to the data sources).  

At a philosophical level, building owners should aspire to apply the FAIR data principles. That is, data is most 

useful when it is Findable, Accessible, Interoperable and Re-useable (FAIR).  Metadata – “data about data” 

– is used to organize the storage of collected data.  It is also used by relevant software applications to 

automatically identify and retrieve data for processing. Capturing metadata is a key part of achieving the 

FAIR data principles. This can be achieved by using a metadata schema.  

Data governance can restrict the ability to share data. If personal data is involved, there must be a legal basis 

for sharing data and appropriate controls put in place, to ensure that personal data is secure. 

The data-layer – which enshrines relevant interoperability and data governance considerations – is typically 

implemented as a cloud-based data platform. Acquisition of a data platform is a significant strategic decision 

for a building owner.  

The task of implementing digitalisation services, in a given building, can generally be divided into two steps 

(1) establishing digital infrastructure and associated data management services (the data-layer) and then (2) 

deploying data-driven software applications (the applications layer). Separating out the delivery of digital 

infrastructure (step 1), from the delivery of desirable data-analytics applications (step 2), would be an im-

portant step forward for the industry.   

Annex 81 participants propose that a building that has installed relevant digital infrastructure (i.e. completed 

step 1) should be termed ‘digital-ready’.  Incentives, or other recognition, should be given to buildings that 

achieve this ‘digital-ready’ objective. 
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Datasets and performance benchmarking can support innovation 

With access to a data platform, a building owner must decide what data to collect. It is generally acknowl-

edged that there is no shortage of data that could be collected. But it can be surprisingly hard to find the data 

that is needed.  For example, in five relatively well instrumented case study buildings, Annex 81 participants 

found that less than 25% of relevant literature KPIs could actually be computed from available data. 

A survey of 65 industry stakeholders found that – when choosing from all the available KPIs – KPIs that relate 

to occupant needs are typically prioritized, followed by KPIs relating to a building's energy efficiency and 

operation.  Understandably, least concern was given to KPIs relating to electricity grid requirements. Industry 

stakeholders expressed a desire for government policy to identify and request that some key datasets be 

collected (particularly data needed for coordinating DER in energy systems).   

Datasets, with well documented ground truth data, are also required for ongoing development of software 

services such as Fault Detection and Diagnosis (FDD), Model Predictive Control (MPC) and Building to Grid 

(B2G) applications. To address this gap, Annex 81 participants created  

• a database of seven FDD datasets from 7 different HVAC systems, with 257 fault cases (at different 

severity levels), and 8 billion data points,  

• a data base of six high quality MPC datasets, from real-world buildings. 

• a database of 16 B2G datasets, sourced from literature. 

An innovative test environment (the Building Optimisation Testing (BOPTEST) framework) was used to con-

duct five benchmarking studies relating to relevant data-driven control algorithms.  All studies found that 

Model Predictive Control and Reinforcement Learning controllers substantially out-performed the test build-

ing’s conventional rule-based control strategies.  They provided better thermal comfort for occupants and 

reduced energy costs by around 20%. The best MPC solutions typically outperformed the best RL solutions. 

Benchmarking tools enabled Annex 81 participants to run two data-driven artificial intelligence (AI) competi-

tions: (1) The ADRENALIN Load Disaggregation Challenge, and (2) The BOPTEST Smart Building HVAC 

Control Challenge.  Such competitions are a powerful tool for cost-effectively harnessing the collective intel-

ligence of global participants, to develop innovative machine learning solutions.   

Industry can benefit from sharing lessons learnt from case studies  

A focus of Annex 81 research was to collect case studies of data-driven smart buildings.  The aim of this 

work was to (i) gather evidence from real-world implementations, (ii) capture stakeholder perspectives and 

context, (iii) identify and summarise business models, (iv) highlight relevant applications and use-cases, and 

(v) document specific technologies and technology stacks. 

Eighteen case studies were collected. They are available through an online repository.  They include a di-

verse range of building types, applications, and locations across thirteen countries. Across the case studies, 

challenges revolved around four core themes: i) data quality and management, ii) technology specification 

and implementation, iii) stakeholder engagement, and iv) governance, compliance, and legal oversight. 

 

An expanded summary of overall Annex findings, and relevant resources produced by the Annex, is 

provided in Section 7 of this report. More detailed information on data quality and data management 

practices is provided in Section 2.  Stakeholder access and aspirations for data (with particular focus on 

performance reporting) is discussed in Section 3.  The state of the art of key data-driven energy productivity 

software applications is provided in Section 4.  The learnings associated with implementing software-based 

energy productivity solutions, in case-study buildings, are detailed in Section 5.  Finally, Section 6 describes 

Annex efforts to understand stakeholder barriers and the key actions required to accelerate industry growth.        
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1. Introduction 

The International Energy Agency (IEA) Annex 81 “Data-Driven Smart Buildings” is an international collabo-

ration project of the Energy in Buildings and Communities (EBC) Technology Collaboration Programme.  

Annex 81 is a collaboration across 18 countries and over 50 expert organisations.  These organisations 

include both industry and research participants.    

Annex 81 aims to achieve greater understanding and growth in the use of digitalisation, as an enabling tool 

for improving energy performance in non-residential buildings. A particular focus of Annex 81 is on using 

near real time data, from energy consuming equipment, to drive advanced analytics that optimise equipment 

operations.  In this way, Annex 81’s focus is on the operational phase of a building’s life-cycle. 

Annex 81’s work was initiated and supported by Mission Innovation’s ‘Affordable Heating and Cooling’ Inno-

vation Challenge.  The MI challenge identified AI solutions for predictive maintenance and control optimiza-

tion as a critical area for clean-tech innovation. 

This report summarises the research and findings of the 4-year collaboration project. It aims to explain what 

makes a building ‘smart’, and how artificial intelligence (AI) techniques can be developed and deployed to 

optimise energy use in a building. 

1.1 What is a Data-Driven Smart Building? 

AlphaBeta (2018) generalised digitalisation as being an automated process from data to decisions. This 

process includes steps of (i) data capture, (ii) data management (iii) data analysis and (iv) decision and 

action.  This process, along with a sample of the relevant digital technologies involved in each of these steps, 

is illustrated in Figure 1.1. 

 

Figure 1.1: Data Innovation Relies on Specialised Systems for Data Capture, Management, Analysis and Action 

(Source: AlphaBeta, 2018). 

From a use-case perspective, digitalisation can be an engineering tool: for automating equipment 

operations to reduce energy consumption, and to match energy demand with the availability of variable 

renewable energy resources.   
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Digitalisation can also be an administrative enabler: for operationalising Government policies that either (i) 

support building owners with incentives (e.g. rating schemes) or (ii) impose relevant regulatory requirements.  

Digitalisation is particularly suitable for streamlining measurement and verification (M&V) processes that 

underpin markets and performance-based assessment (a requirement of many schemes). 

In almost all use-cases, digitalisation plays a key role as an information sharing tool: distributing 

information to where it is needed.  Information/data sharing can involve either one-way or two-way 

communication.  Information/data sharing can be machine to human (providing decision support for manual 

interventions), or machine to machine (automating dynamic processes). 

This data-driven approach is potentially highly scalable, for industry, because:  

• It reduces the need for skilled practitioners to devote time to understanding the features and opera-

tion of a building and it avoids manual coding of rules-based computational models, 

• It can utilise powerful analytical tools (e.g. machine learning algorithms) that have already been 

adopted and proven in other industries), and 

• It utilises IT infrastructure and methods that support automated processing of data and digital com-

munication between machines/devices, and with user friendly interfaces for humans. 

One exciting opportunity arising from digitalisation, is the ability to apply AI to data emanating from connected 

buildings.  This can be used to improve the operation of buildings.  With sufficient ‘intelligence’, the claim is 

that physical assets in a building can autonomously select an informed course of action for achieving higher-

level objectives (e.g. optimising energy use, IEQ, occupant experience etc). 

Incorporating these concepts, Annex 81 participants collectively agreed on the following definition for a ‘Data-

Driven Smart Building’:  

A Data-Driven Smart Building is a building that uses digitalisation technologies to dynamically 

optimise its operation, where optimisation objectives typically relate to site energy use, IEQ, 

and occupant experience. 

Ideally, it is sufficiently connected and integrated with markets and processes, that it can 

adaptively respond to externalities and changing conditions (e.g. weather, electricity prices, 

energy supply constraints, equipment maintenance, etc). Ideally, it has sufficient memory of 

past events, and ability to anticipate future impacts, that it can select an informed course of 

action for achieving higher-level objectives – reminiscent of human intelligence. 

To achieve this vision, a Data-Driven Smart Building utilises both live and historical data from 

relevant sensors, IoT equipment, mobile devices, and other sources, to provide situational 

awareness for informed decision-making. Achieving optimisation objectives will often benefit 

from advanced supervisory-level automation, driven by computational analysis (e.g. Machine 

Learning, AI, etc) applied to available data. 

Locatee and Memoori (2017) identify seven attributes of Smart Buildings. Each of these attributes provides 

the basis for a set of use-cases (applications), which can deliver tangible benefits in the form of (i) higher 

operational efficiency and resource utilisation, (ii) improved user experience and indoor environment for 

building occupants, (iii) information distribution between stakeholders and (iv) risk mitigation.  

All of these applications will have different data needs, as inputs for automated decisions and actions. Of 

most interest to the International Energy Agency are the various energy productivity applications1. These 

applications are illustrated in Figure 1.2. It should be noted, however, that non-energy related co-benefits 

(from digitalisation) can be an important motivator for investment decisions, and should not be ignored. 

 

 

 
1 Energy productivity is a term used to include all the various forms of useful energy services – including energy 
efficiency, load shaping and flexible demand services  
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Figure 1.2: Typical energy productivity applications that can be hosted on a data platform (adapted from Kramer et al, 
2020) 

Figure 1.2 usefully distinguishes between the data collection/management infrastructure and the software 

applications that perform relevant analytics based energy-productivity services.  Kramer et al. (2020) call this 

combination of tools and data flows an Energy Management Information System (EMIS).  The 

software/hardware components of an EMIS are discussed more in Section 1.2 on the ‘data layer’.      

The energy productivity applications in Figure 1.2 are summarised below. Some are discussed in more detail 

in Section 4: 

• Monthly Data Analytics: Energy bill analytics provides information transparency for tracking the 

aggregate impact of business sustainability initiatives at monthly or annual intervals.  For example, 

normalised energy tracking over a 10-year period, using the NABERS  rating system, has helped 

building owners in Australia reduce their energy consumption by an average of 30-40%. 

• Energy Information Systems: Real-time energy (and sub) meter data collection allows more fine-

grained analysis of energy trends. These analytics can identify energy consuming equipment and 

provide energy-consumption baselines to measure the benefits from investing in energy saving 

activities. Kramer et al. (2020)  found that the median annual energy savings across a large cohort 

of buildings was around 3%. 

• Equipment fault detection and diagnosis (FDD): By combining sensor data, heating, ventilation, 

and air-conditioning (HVAC) equipment data and energy meter data, it is possible to get a more 

detailed understanding of why energy consumption is higher than necessary. This can be used to 

get insights into how to reduce energy consumption.  Across 1,500 buildings in North America, 

Kramer et al. (2020) and Crowe et al. (2020)  found median annual energy savings of ~9% with a 

median simple payback time of 1.7 years.  FDD derived insights will typically require manual 

implementation.    
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• Automated System Optimisation (including Model Predictive Control): The NSW Office of 

Environment and Heritage (2015)  describes several advanced HVAC control strategies. Each has 

the potential for significant energy savings.  These automated control strategies can override static 

control set-points with more dynamic seasonal (or even hourly) set-points, or strategies that take 

advantage of dynamic price and weather forecasts. Despite energy savings of up to 40%, the 

opportunity of this technology has not yet been widely exploited. This is at least partly due to fears 

of automated controls creating unintended or unsupervised consequences.  

• Grid Integrated Demand Flexibility: Beyond energy efficiency actions in single buildings, the 

connectivity obtained from an EMIS enables a portfolio of assets to be managed in response to 

electricity market signals. For example, the Energy Queensland ‘Broad Based’ flexible demand 

program connected over 136,000 air conditioners, providing up to 150MW of diversified load under 

control, during peak demand events, at around 20% of the cost of batteries (Brinsmead et al., 

2021).   

Smart meters are an important component of these applications, enabling more sophisticated energy 

pricing and user awareness.  However, metering alone is rarely enough to understand a building’s energy 

consumption properly and to drive performance improvements. Consequently, metering should be viewed 

as just one part of an integrated EMIS. 

1.2 The ‘Data Layer’ 

Core to the success of smart buildings is access to data.  Data can be exchanged locally, between devices 

on-premises, using various LAN technology options. However, data accessibility (for potential users) is vastly 

improved by using cloud technology.  The cloud enables a wider range of both on and off-premises data 

sources to be analysed together.  It also enables information to be efficiently distributed to relevant people 

via remote personal computers and mobile devices.    

The generalised digital infrastructure, that Annex 81 considers suitable for implementing data-driven smart-

building solutions, is illustrated in Figure 1.3. It identifies a number of ‘layers’, in the software/hardware stack, 

that combine to create a highly flexible digital infrastructure, that gives the building owner control over their 

digital resources, and access to 3rd party software services. 

 

Figure 1.3: The data layer in the digital infrastructure stack. 
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In the ‘device & systems layer’ relevant data sources, from all the equipment and sensors in the building, 

communicate operational data to an on-premises controller (e.g. building management system (BMS), en-

ergy management system (EMS) etc) or data acquisition server.  This enables staff to view, monitor and 

optimise building operations.  This local communication is done via local wired or wireless protocols. 

In the ‘network layer’ data is collected on a local server and/or relevant gateway/hub devices and transmitted 

to a central cloud data platform (the data layer).  Communication can be via a range of wide area communi-

cations technologies, including fibre, cable or wireless.  This backhaul communications capability from the 

building may be dedicated to (i) the device (e.g. in IoT applications), (ii) to the broader suite of building 

services (dedicated building services network (BSN)), or (iii) integrated with other communications services 

(such as internet, telephone, television), through an integrated communications network (ICN).  Much of the 

cyber security requirements of smart buildings are dealt with in the network layer.  

Irrespective of the data source and network layer technology, the role of the ‘data layer’ is to (i) consolidate 

the data in common formats, (ii) provide standardised interfaces to data sources and application software, 

(iii) provide structured data storage and (iv) make the data accessible to each of the deployed software 

services in the application layer.  The data layer takes the form of a cloud-based data platform. 

The ‘application layer’ is hypothesized to be somewhat analogous to the ‘App Store’ on a mobile device.  

The building owner would simply download their preferred App, and the software would self-configure to 

deliver the desired service.  This self-configuring functionality involves automatically finding and accessing 

necessary data to enable it to perform the desired service.  The application layer vision has independent 

third-party App developers creating innovative new Apps, to give building owners lots of choice in the services 

that they can access (rather than be locked into a single vendor’s ecosystem). 

The smart buildings industry is technologically behind the consumer mobile device industry, and the vision 

of the ‘Smart Buildings App Store’ is yet to be fully realized.  However, the data-layer concept and data-

platforms are a key enabler of this vision.  The data layer reduces the cost and complexity of deploying 

software applications, at least partly by managing interoperability issues.   

Various of these data management concepts are discussed in Section 2. The focus of this report is on the 

data layer and the application layer.   

1.3 A ‘Digital-Ready’ Building 

Industry is working steadily toward the adoption of AI solutions and the vision of data-driven smart buildings.  

However, scalable cost-effective implementation in buildings can still be challenging. 

This task of implementing digital energy productivity strategies, in a given building, can generally be divided 

into two steps: Step 1 - establishing IT infrastructure and associated data management services (the data-

layer) and then Step 2 - deploying data-driven software applications (the applications layer).  

Unfortunately, solution providers with innovative software applications for step 2, will often need to combine 

their software with a data acquisition platform (as a bundled service) to address step 1. This is a significant 

barrier to market entry for specialist software developers.  It can lead to multiple platforms being installed in 

a building (each for its own application), with the resulting potential for cost duplication and data management 

conflicts. 

Separating out the delivery of IT infrastructure, connectivity and the data-layer (step 1), from the delivery of 

desired data-analytics applications (step 2), as illustrated in Figure 1.4, would be an important step forward 

for the industry.  It would allow (i) a more agile approach to application deployment, (ii) more sophisticated 

data management practices, (iii) greater competition, (iv) more innovation, and (v) a more diverse range of 

use cases than is currently encountered in practice.   
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In this context, industry identified the critical need for buildings to be ‘digital ready’.  A ‘digital ready’ building 

was seen as one that achieves certain minimum standard levels of connectivity and data management ca-

pability, sufficient to enable easy deployment of modern energy productivity software-services. 

Figure 1.4 illustrates the two-step journey, highlighting the barriers that are encountered, predominantly in 

the first step of establishing IT infrastructure and data management services.  Figure 1.4 further highlights 

the consequent need to establish some concept of (and guidance for achieving) ‘digital ready’.  The attributes 

and features of ‘digital ready’ would ideally provide a stand-alone target to guide the first step of the digitali-

sation journey for a building. 

  

Figure 1.4: The two step journey for deployment of data-driven services (adapted from Trianni et al., 2022), and the 
benefit of an intermediate ‘digital ready’ landing point. 
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2. Data Management and Interoperability 

Focussing on the ‘data-layer’ of a smart building, Annex 81 research identified key considerations that are 

involved in achieving ‘digital readiness’ in a building.  The research particularly considered aspects of data 

management and interoperability. 

Virtually all studies on the barriers to digitalisation point out the significance of interoperability issues and the 

need for data standards to help overcome them. They point out that interoperability issues relate to both 

device-level communications and to the level of informational/semantic context attached to data.  

Device (communications) interoperability barriers occur when the communication protocols used by one 

manufacturer’s devices are proprietary and therefore unable to talk with the devices from other manufactur-

ers.   This makes it difficult and expensive to integrate hardware components from different manufacturers 

into a coherent operating system for the building.  This can also lead to vendor lock-in and high on-going 

service costs.  BACnet (https://bacnet.org/) was introduced as an open communications protocol to address 

this issue.  BACnet is both an international (ISO) and ANSI standard.  It is maintained by ASHRAE. Unfortu-

nately, the implementation of BACnet is not always uniform, and interoperability issues can still exist. 

Analytics (informational/semantic) interoperability barriers occur when the data being collected from devices 

comes without any contextual information (metadata) that could give meaning to the data.  Important contex-

tual information includes the source and type of data, and the interrelationships between the data source and 

the features/objects in the building. This contextual information is required to make data ‘machine readable’, 

such that software can be automated and can apply logical reasoning to the data that it is processing.  

2.1 The FAIR Data Principles 

At a philosophical level the building owner can address interoperability issues by complying with the FAIR 

data principles. That is, data is most useful when it is Findable, Accessible, Interoperable and Reuseable 

(FAIR).  These FAIR data principles are summarised in Figure 2.1. 

 

Figure 2.1: The FAIR guiding principles (Source: Wilkinson et al, 2016). 

https://bacnet.org/
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While various sensible constraints may make this difficult to achieve in all circumstances, the FAIR data 

principles should be the building-owner’s aspirational objective, for best practice data collection and data 

management. 

2.2 Metadata and Metadata Management 

There is a vast amount of data that can be collected in buildings. To collect and manage this data, it is 

necessary to think about how that data will be identified, organized, and consumed by downstream data-

driven applications. This can be accomplished through the use of metadata – “data about data” – which 

encodes the salient properties of data, including their provenance (how the data was produced and managed) 

and their context (where the data comes from and how it relates to the building).  

Metadata provides meaning to data. It is a key facet of the FAIR data principles. 

Metadata schemas are organisational structures for assigning metadata information to data sources. Among 

other features, they define: 

• how data sources should be labelled or catalogued. 

• how the associations between data sources should be represented. 

• what attributes and properties can or must be attached to data sources. 

• how data sources relate to descriptions of the building and its assets. 

• the engineering units and enumeration definitions for the data itself.  

Metadata schemas standardise what information should be captured, and in what format. They provide a 

standardised structure for storing data that is independent of the choice of vendor or protocol, architecture 

and composition of building, or choice of data-driven consumers and processes. This provides the ability to 

(semi-)automate installation, configuration, and operation of building software applications, that deliver data-

driven controls and analytics. 

While metadata schemas provide the general framework for organising information about a given building, 

the schema is not, in itself, the information about any given building. The actual metadata about an individual 

building is contained in a metadata model.  Models are the digital representations of information about a 

specific building. Figure 2.2 illustrates how a building’s metadata model provides the digital interface and 

relationship mapping between common subsystems (HVAC, lighting, electrical, and plumbing) in a building.  

 

Figure 2.2: Representation of how a metadata model relates to and models the building, its subsystems, and its data 
sources. 
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The metadata model is a logically separate entity, typically stored in a database (e.g. a graph database, or 

relational database), which contains references to the components of those subsystems and their respective 

data-sources. Software applications (Apps) execute queries against the metadata model to discover and 

retrieve important details and configurations necessary for processing data. 

Ontologies are specific kinds of schemas which go beyond defining possible terms, attributes, and 

relationships by imposing additional rules and axioms that can ensure the consistent communication of 

semantic information. Ontologies additionally ensure that such metadata has human- and machine-

interpretable meaning (i.e. it has semantics). Ontologies support an important operation called validation. 

The validation process takes a metadata model as an input and ensures that it obeys all of the rules, 

constraints, axioms and other requirements defined by the ontology. 

Ontologies are commonly, but not necessarily, communicated as graphs using the Resource Description 

Framework (RDF) W3C standard. RDF ontologies can be expressed in one of several languages, including 

OWL (Web Ontology Language) and SHACL (SHApes Constraint Language). 

2.2.1 Comparing metadata schemas 

Different approaches have been taken to the development of metadata schemas for data-driven smart 

buildings, exhibiting different preferences and the various needs of different use-cases.  

When deciding to adopt a metadata schema, we recommend considering the following characteristics of the 

different schemas available: 

1. Structure of the models that will be created: The structure of the model determines what 

questions can be answered through queries against the model. For example, while one can order 

and filter tabular data by the characteristics contained within, it is more difficult to inquire about 

relationships between the entities in a tabular model. Point naming schemes are simple to store, 

but they only support very basic string-based lookups. In contrast, graph-based models support 

richer queries that can relate multiple entities together in a manner more expressive than tabular 

models.  The user must review the benefits, concerns, drawbacks, and advantages of available 

options relating to relational models, graph models and point labels.  The choice of model should 

be informed by the questions that the data-consumers, the software applications, and other users 

of the model need to answer for their operation. 

2. Vocabulary organization and completeness and strictness/rigor: In this context, “vocabulary” 

is the terminology used for describing different objects, relationships, and concepts relevant to a 

building.  How are concepts organised and defined in the model? Are they generic or specific? Are 

concepts defined nominally (through labels) or structurally (through properties)? A detailed 

vocabulary helps to drive consistent representations but may reduce freedom to describe non-

standard scenarios and may be onerous to implement.  

3. Alignment with other metadata schemas: It may be useful to use more than one schema to 

cover different use cases and different aspects of the building.  This can take advantage of the 

respective strengths of different schemas (rather than seeking to find a “universal schema”). 

Consequently, it is important to consider the ways in which metadata schemas may align with one 

another.   

In addition to the technical characteristics of the schema, above, there are a range of implementation 

considerations that may impact on the viability of a given schema, including:   

1. Impact on smart building software architecture: How is metadata stored and accessed by 

software processes in the building? For example, do these processes access a metadata model 

through a database service, or through another method? How does incorporating a specific 

metadata schema influence the development, deployment, and management of data-driven 

processes in the building? 
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2. Required tooling / software support / expertise: do metadata models need proprietary software? 

What features are required from supporting data platforms? What does this mean for its 

deployment in a building? Is the schema commercially supported? How can models created using 

the schema be used by the BMS, and relevant data platforms? 

3. Creation / bootstrapping /maintenance: Engineering time is generally required to create a model 

for a building. It is important to consider how models get built and maintained. Can model 

development and management be done in an automated way, or does it require manual curation? 

Who owns the metadata model? When changes are made in the building, how does the model get 

updated and by whom? 

The following metadata schemas were surveyed in the Annex 81 report “Survey of metadata schemas for 

data-driven smart buildings” (Fierro and Pauwels, 2022): Project Haystack, Brick, RealEstateCore (REC), 

Building Topology Ontology (BOT), Smart Applications REFerence Ontology (SAREF4BLDG), Semantic 

Sensor Network Ontology (SSN/SOSA), and Google Digital Buildings (DBO). These schemas differ primarily 

in how data models are created and how they support data processing and data discovery in smart buildings 

(Table 2.1). 

Table 2.1: Overview of metadata schemas and their model structure. 

Metadata Schema Naming Convention Tags Relational Graph RDF Ontology 

Haystack No Yes No Yes No 

Brick No Yes No Yes Yes 

RealEstateCore No No No Yes Yes 

BOT No No No Yes Yes 

SAREF4BLDG No No No Yes Yes 

SSN/SOSA No No No Yes Yes 

Google Digital Buildings Yes No No Yes Yes2 

Several schemas — Project Haystack, Brick, RealEstateCore and Google Digital Buildings — deal directly 

with the management and organisation of telemetry information in the building. Project Haystack and Google 

Digital Buildings explicitly define the format of the data and how it is accessed. Brick and RealEstateCore 

define more generic structures which can be incorporated into a variety of APIs and software platforms.  

Other schemas — BOT and SAREF4BLDG — provide more contextual information about the building which 

can assist software applications to find relevant data. They typically focus more on asset management rather 

than telemetry data. As a result, these metadata schemas are much closer to the architecture and 

engineering construction domain and the processing of BIM information. Conversely, SSN/SOSA provides 

all needed mechanisms to represent sensor data and actuator data on a large and detailed scale. It leaves 

the representation of actual building data to other ontologies like Brick, BOT, and SAREF. 

Among the schemas, there are a variety of perspectives of what in the building should be modelled, and 

there are differences in the consistency and specificity of those perspectives.  

Brick and Project Haystack are able tp model many common building subsystems including HVAC, lighting, 

and electrical systems. Project Haystack’s tagging model affords a great deal of flexibility in describing these 

systems at the cost of consistency across Haystack models. In contrast, Brick prescribes more of the model 

structure in exchange for a consistent modelling and querying experience for the consumer of the model. 

Google Digital Buildings focuses primarily on collections of data coming out of the building, rather than the 

topology and composition of the building subsystems. RealEstateCore is similar to Brick, but focuses more 

on property management aspects. It includes a shallower hierarchy of equipment and data source types. 

 
2 The Google Digital Buildings metadata schema defines an OWL ontology export but it is not the intended mode of interaction, and 
does not support all features of the metadata schema 
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Finally, BOT tends to focus much more on asset management and description of the building itself, with much 

less focus on HVAC systems or their telemetric data logs. 

Generally, we can recognize a spectrum of schemas, from very flexible approaches (on the left in Figure 2.3) 

towards more rigid and formally defined approaches (on the right in Figure 2.3). 

 

Figure 2.3: A spectrum of building data representation from more flexible and ad-hoc (leftmost) to more formal and 
semantically defined (rightmost); plus the estimated location on that scale for several existing metadata schemas. 

Despite the diversity of approaches and stakeholders for each metadata schema, there is a growing desire 

to ensure unity and alignment between the various groups.  More than one schema can be used to take 

advantage of respective strengths in different use cases (rather than seeking to find a “universal schema”). 

We predict, hope, and recommend that future editions of metadata schemas will focus more on 

complementing each other through reductions in scope, rather than expanding the modelling scope to try to 

compete on all the different perspectives of data-driven buildings.  

We also see RDF-based metadata schemas emerging as the dominant modelling approach. These 

demonstrate the highest degrees of interoperability and reusability compared to other proprietary models. 

2.2.2 Semantic Sufficiency 

One of the key challenges in adopting semantic metadata is how to create and validate the metadata model 

for a building (validation is the process by which a metadata model is checked against the rules, axioms, 

constraints, and other requirements defined by an ontology).  

Because fully automated metadata model creation has not yet been developed, most deployments still 

require some manual effort to create the metadata model from existing sources of data (see Fierro and 

Pauwels, 2022 for more details). Without some guiding principle for what parts of the model to prioritize, 

model authors are left to either model everything (which can be cost-prohibitive) or guess at what metadata 

will be required by downstream analyses, controls, and other data consuming processes. The lack of such a 

principle means it is possible to create models which are valid with respect to the ontology, but do not actually 

contain enough metadata to support applications. 

To address the lack of such a principle, Fierro et al. (2022) introduced semantic sufficiency, a practical 

approach to creating and evaluating “complete” semantic metadata models. Semantic sufficiency pulls 

application-level requirements on metadata into the validation process. Specifically, the semantic sufficiency 

principle holds that a model is “complete” when it contains sufficient metadata to support a desired suite of 

applications. While straightforward at first glance, this principle exposes two important features enabled by 

semantic metadata. First, semantic metadata makes it possible to precisely express the configuration 

information required by a software application using the metadata schema. Second, semantic metadata 

makes it possible to verify that a given model of a building contains the correct (or “sufficient”) metadata to 

support a desired suite of applications. 
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Consider the workflow illustrated in Figure 2.4. Model authors are given a point list (A), usually from some 

standard or other control specification. The point list contains the informal names of the sensors, actuators, 

and other inputs and outputs required by some data-driven application. In Figure 2.4, the point list given is 

from the ASHRAE Guideline 36 document for high-performance sequences of operations for common HVAC 

systems.  

Such a point list can be expressed as shapes, which are functions that validate part of a model (e.g., a 

particular piece of equipment) against the metadata requirements for a given application (B). Shapes allow 

metadata models (C) to be validated against a family of application specifications. The output of validation is 

a report (D) which tells the model authors (E) what metadata needs to be added or corrected to make the 

model semantically sufficient. The model is semantically sufficient if it contains all of the metadata required 

for relevant metadata-aware software applications to configure themselves and execute. 

 

Figure 2.4: Illustration of how semantic sufficiency guides the creation of metadata models. 

Currently, this semantic sufficiency information is almost non-existent, or at least not explicitly provided.  

However, in future we would expect data requirements lists to be provided by software application providers, 

so that building owners and their contractors can ascertain what information is missing for successful 

deployment, before purchasing a service. 

This is an important step for the future of the data-driven software services industry, as knowledge of the 

required sensors, actuators, and other I/O points allows stakeholders to determine the business case for 

adopting the application. That is, by reading the metadata requirements of an application, the building owner 

can determine the capital cost of buying the required sensors and equipment (if not already there), and they 

can determine the cost for making those data sources available. These costs can then be compared with the 

expected financial benefits of adopting the software application, to make the business case for investment 

with adequate certainty. 

 

2.3 Governance of Data 

Just because data can be collected, does not mean that it can be shared.  Care should be taken to ensure 

that permission has been granted prior to using data. 

2.3.1 Licence to use commercial data 

Often this is obtained through a license from the data owner.  However, the concept of the data owner is not 

always obvious.  
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It is common for people and businesses to refer to data as if it is something that can be owned. For example, 

individuals and businesses commonly refer to ‘my data’ or ‘our data’. However, in general, there are no 

property rights in individual points of data. Therefore, data is not normally owned.  

Instead, deliberate collection and curation of data as a data-set can be viewed as a ‘creative work’ subject to 

copyright law. Various actors may have some claim to helping ‘make’ a data-set, with the resulting possibility 

of having some rights over the intellectual property. The maker will probably be the entity who made the 

commercial decision to collect the data and made the commercial investment in carrying out the collection 

and curation of the data-set. 

Given that the building owner ultimately pays for all the services, and needs the ability to competitively source 

providers at regular intervals, it is generally assumed that data should belong to the building owner. This may 

not be the case, and (irrespective of legal rights) data has a practical tendency to find its way to the service 

provider and end up inaccessible to the building owner.  Indeed, the uplift of data to access-controlled exter-

nal IT systems can sometimes be used as a commercial tool (as part of a service provider’s business model) 

for ensuring that the building owner retains their services. 

2.3.2 Basis for using personal data and data controls 

The General Data Protection Regulation (GDPR) (https://gdpr-info.eu/) regulates data protection and privacy 

in Europe.  It has also been adopted, in full or part, in various other jurisdictions. The GDPR defines personal 

data as any information that relates to an identified or identifiable living individual. 

Most energy productivity applications in commercial buildings will use base-building data sources that relate 

to the operation of the whole building. As this data relates to the aggregate (rather than individual) needs of 

commercial building occupants, it is typically not considered to be personal data relating to an individual.   

However, some applications could potentially utilise occupant data which is personal.  For example, occupant 

movement data can be used as an input to drive allocation of energy consuming HVAC services.  Occupants 

in the building may also wish to interact with building services using Apps on their mobile phone (e.g. to 

improve thermal comfort conditions, make meeting room bookings, or access other resources etc), which 

also has the potential to lead to the collection of personal data (e.g. email addresses, MAC addresses etc). 

When using personal data, the GDPR requires that there be (i) a legal “basis” for processing the data, (ii) 

adherence to general data processing rules of transparency and fairness, and (iii) appropriate technical and 

organisational safeguards in place to ensure the security of the personal data. The GDPR takes a risk-based 

approach, where companies/organisations that process personal data are encouraged to implement 

protective measures corresponding to the level of risk of their data processing activities. 

The six legal bases for processing personal data that are recognised by the GDPR (Article 6(1)) include: 

1. The data subject has given consent 

2. Performance of a contract, to which the data subject is party 

3. Compliance with a legal obligation 

4. Protecting the ‘vital interests’ of the data subject  

5. Public interest or acting under official public authority 

6. ‘Legitimate interests’ 

The Five Safes Framework can be used to identify protective measures for safeguarding personal data.  The 

data sharing principles of this framework are illustrated in Figure 2.5 below. 

Each of the Principles can be considered as a focus area, where the stringency of the required control 

mechanisms (risk management choices) can be adjusted to achieve an appropriate balance between 

openness and the level of sensitivity of the data being shared. 

https://gdpr-info.eu/
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Figure 2.5: Principles for Sharing Data Safely (Source: Commonwealth of Australia, 2019). 

2.4 Choosing a Data Platform 

The data-layer (introduced in Section 1.2) – which enshrines relevant interoperability and data governance 

considerations (discussed in Sections 2.1, 2.2 and 2.3) – is ultimately implemented as a data platform. 

Data platforms provide the cloud software layer for distributing data to where it is needed. The data platform 

is (for digitalisation of buildings) analogous, at least partly, to what a computer operating-system is for a 

personal computer; guiding computational workflows and exchanging data to/from storage. Importantly, the 

data platform consolidates data from disparate sources in one location and uses relevant data standards to 

provide a coherent, harmonised structure for the data.   

In different contexts/applications the data platform could be called an IoT platform, an Energy Management 

Information System (EMIS) or Distributed Energy Resource Management System (DERMS). 

The data platform provides an intermediating role between data collection and data-driven services (software 

applications).  The assembly of consistent yet individually curated datasets, on a platform, enables applica-

tions software to be cost effectively developed and deployed. Without this enabling aggregation, individual 

software application developers would need to engage with each individual data owner, potentially having to 

develop tailored applications based on the structure and semantics of each source of data.  

Consequently, the platform plays a key role in brokering the relationship between data providers and software 

application developers who use the data to deliver value back to the providers. This brokerage entails: 

• Setting consistent standards for data uploaded or deposited to the platform  

• Qualifying/validating/authorising the applications that interact with the data on the platform 

2.4.1 Strategic data-platform procurement consideration 

Given the role of the data platform, described above, it is clear that data platforms can (at best) facilitate 

desirable access to data but (at worst) can frustrate access to data and create a position of market power for 

the platform owner. Consequently, acquisition of a data platform is a significant strategic decision for the 

building owner. Key considerations for the building owner include 
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• Data Sovereignty: By collecting data and storing data on behalf of building owners, a data platform 

owner could potentially gain significant visibility of confidential or sensitive data, and/or be able to 

use the data to provide services to others.  Indeed, the business model of some IT platforms, in some 

other industry sectors, is to provide services for free on the condition that the collected data can be 

harvested to generate separate revenue streams for the platform owner.  

• Vendor lock in: Once data is stored on an external provider’s data platform, it may be difficult to 

recover that data if there is reason to change provider.  This potential (to lose historical data) creates 

a disincentive to change provider, stifling competition and innovation. Similarly, so-called ‘network 

effects’ have the potential to create natural monopolies for platform providers.  The more a platform 

is adopted by users the more useful it becomes and the harder it is for others to compete. 

Options for building owners include 

1. The building owner establishes a private data warehouse for capturing, storing and managing data 

on the operation of their buildings. Data is stored on the building owner’s servers and separately 

distributed to service providers by the building owner: 

 In this scenario, the cost of developing the data platform is high, but the building owner 

maintains full control and in-house capability to enable more tailored/bespoke services.  

2. The building owner utilizes a third-party data platform service to collect and manage their data, as a 

separate service to any analytics provider(s) that the building owner may subsequently use:  

 In this scenario, the cost of developing the data platform is reduced compared with develop-

ing a bespoke data-warehouse. To the extent that the data platform is independent from 

analytics services, and provides the building owner with tools for accessing and self-manag-

ing their data, the data platform can provide access to a wide variety of third-party services. 

3. Building owner obtains data platform services bundled up inside relevant software services. 

 In this scenario, the building owner does not explicitly pay for a data platform. Instead, the 

platform is installed somewhat inadvertently.  This potentially limits access to data (loss of 

data sovereignty) and limits the ability to reuse data for other services (vendor lock in).  

While the property industry has generally been slower than the broader IT industry to consider many of these 

issues, there are various highly capable companies offering data platform services via a Platform-as-a-Ser-

vice (PaaS) business model.  

2.4.2 Data Platform Functionalities 

Key capabilities of a data platform include: 

A. Building Onboarding and Data-Source Connection: A building services contractor must be able to 

connect the data platform to, and ingest data from, the various on-premises data sources in a way that 

recognises context (ie metadata information that can relate the data source to features of the building).  These 

data platform functionalities include; 

- Building registration wizards:  These wizards are used for initial registration/ configuration/ 

partitioning of a new building on the data platform, and for describing the features of the building.  

The features of the building, entered into the system, can then be used as tags for ascribing 

meaning to data sources streaming into the platform.  Ideally the building registration wizard will 

support the creation of a building model based on a recognised industry standard metadata 

schema.  

- Device communication protocols:  The platform should be able to ingest data from a wide variety of 

devices using common communications protocols such as BACnet, Modbus, and MQTT.  It should 

also be able to ingest data through APIs and perform scheduled FTPS ingestions of Comma 

Separated Values (CSV) files. 
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- Data-source connection:  The platform should provide means for a building services contractor to 

find, authenticate and connect to data-sources.  

B. Data Storage and Retrieval: The data platform should enable people and machines to find and retrieve 

data from storage in a way that facilitates data-processing and avoids data leakage.  These data platform 

functionalities include; 

- Data cleaning: A range of tools should be available for processing incoming data to ensure data 

quality including (i) detection of anomalies and stale data and (ii) data interpolation to fill gaps and 

unify timestamps etc.    

- Time series database:  The platform will store time-stamped data so that trends in the data can be 

identified. 

- Metadata store (e.g. graph database): to process logical queries for finding data sources from the 

timeseries database, on request by software applications. This store takes advantage of the 

metadata schema to support software and data reuseability.     

- Data access permissioning system: Data should be containerised in a way that provides data 

‘ownership’ for the designated data-controller organisation.  The data-controller organisation would 

appoint an administrator responsible for maintaining data sovereignty for the organisation.  From 

there, only authorised people and software applications should be able to access data, through a 

permissioning system supervised by the administrator. The platform should permit users to access 

specific data (not just all or nothing), at different role-based levels of access (e.g. read or write).   

- Data download: Time series data should be able to be downloaded by the permitted user as a csv 

file, and be streamed to permitted third party software applications via APIs.  

C. Data Utilisation and User Support: The data platform should provide basic support features (beyond 

just data-management/ data-access, as described in B above) that help users to deliver value adding data-

driven software services. 

- Basic visualisations and alerts: The user should be able to view trendlines for timeseries data and 

thereby manually explore possible cause and effect relationships between different data streams.   

The user should be able to set alerts to reflect their preferred alert thresholds.  

- Compute resources and output signals: Algorithms will ideally be able to (optionally) process data 

on-platform (as “Applications”), utilising Platform-as-a-Service (PaaS) compute resources.  The 

results/outputs from these data-processing algorithms should be able to be automatically sent to 

remote devices, as informational alerts and/or supervisory control signals.  

- Application Marketplace and Third-Party Data: These feature enables building managers to extend 

the data platform’s built-in capabilities through the ability to browse available third-party data-

sources and/or install third-party, data-driven, ready-to-use applications on the platform. A software 

development kit (SDK) would ideally be available for third party developers, so that independent 

software developers can be contracted to build customised applications. 

A review was conducted of available data platforms in 2022.  The aim of the review was to gain an indicative 

understanding of the extent to which the desirable features of data platforms are readily available in the 

market. The review involved collecting responses from platform owners to a questionnaire/survey covering 

11 thematic areas: 

1. Governance 

2. Data access and security 

3. Data upload/building onboarding  

4. Data capture 

5. Data storage 

6. On-platform programming 

7. Data and application code recovery 

8. Output signals and control 

9. Applications marketplace 

10. Screens and visualization 

11. Platform development 
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The questions were both of a quantitative and qualitative nature.  Questions included both (i) closed yes/no 

or multiple-choice answer questions, and (ii) open text-based questions, with no limits on the length of the 

answer. Responses were received from 12 data platforms, covering both not-for-profit/government platforms 

(6) and commercial platforms (6). 

Some findings from the survey include: 

• Five out of the 12 platforms did not use any external cloud hosting services, for 1 it was optional, 2 

used Amazon Web Services and 3 used Azure. 

• 9 out of the 12 platforms gave clients discretion over access to their data, and 2 could be fine-

tuned for this possibility. All platforms claimed the ability for the client to make parts of the data 

(within a building) available to third parties. 10 out of the 12 platforms could provide different tiers of 

access based on role, both internally (within the data client organisation) and externally for 

authorised third parties.  

• Platforms had connectors for the common open communications protocols (e.g. BACnet, Modbus), 

and various data cleaning functions. APIs were provided in 10 out of the 12 platforms, to assist with 

data export to external platforms.  

• A structured schema (such as Brick), that enables data to be linked to physical spaces and 

systems within the building, was used by 7 of the 12 platforms. There was no consistency across 

the platforms regarding the programming languages used to query the database.  

• An Applications marketplace (including means for 3rd party providers to list/advertise their software 

applications to data clients) was provided in 4 out of 12 platforms and it was under construction in 2 

platforms. One platform had a payment gateway for charging App usage fees. One platform hosted 

an open github community, but did not provide a marketplace. 

• Six out of the 12 platforms were capable of dispatching high level interface outputs, for cloud-

based supervisory control of building mechanical systems. 

The survey highlights growing technical maturity in the market with most data platforms providing 

sophisticated data capture and data management capability.  A significant point of difference relates to the 

availability of data sharing capabilities that support third-party application developers.  These points of 

difference include (but not limited to) availability of an application marketplace and use of common 

programming languages for querying the database. Presumably, this partly reflects differences in adopted 

commercial business models. 

There also appear to be some different perspectives on the future role of data platforms in smart buildings.  

A number of data platforms have opted not to utilise cloud hosting.  And many of the platforms have opted 

not to target supervisory control services.  This may reflect different perspectives on the viability of certain 

applications, when cyber security is considered. 

 

  



 
 

 35/91 

3. Data Availability and Building Perfor-

mance KPIs 

Benchmarking building operational performance is a critical step in understanding the quality and capability 

of a building in terms of its energy-efficiency, air quality, and comfort for occupants. This is a multi-criteria 

assessment typically involving (i) collection of relevant data from sensors and equipment and (ii) using the 

data to calculate suitable key performance indicators (KPIs).  These KPIs provide actionable information that 

can help to evaluate and track if a building is meeting its objectives.  

Annex 81 research investigated the usefulness of available data-driven KPIs, and the availability of data 

sufficient to calculate them. Given that a good KPI should be accessible, quantifiable, and actionable, the 

research was structured to address the following three research questions:  

Research Qu 1: What are the KPIs used in existing buildings and in energy-related literature?  

Research Qu 2: What KPIs can be implemented within the existing infrastructure of current buildings?  

Research Qu 3: Which KPIs are important to building industry stakeholders? 

The questions and the methodology for answering these questions is indicated in Figure 3.1. 

 

Figure 3.1: Methodology for assessing operational building performance KPIs. 

Annex 81 research also investigated data collection issues, predominantly through interviews and surveys.  

3.1 Data-Driven Building Assessment KPIs 

The literature identified numerous KPIs.  These are clustered against four target outcomes/ impact-areas. 

Occupant-centric KPIs 

Occupants are the primary beneficiaries of building services. Occupants influence the energy perfor-

mance of buildings and, in-turn, building operations shape the occupants’ experience of comfort, produc-

tivity, and well-being. KPIs are required to measure these influences. Occupant-centric KPIs were cate-

gorised into three main areas: those related to occupants' interaction with building systems, those based 

on indoor/outdoor environmental parameters, and those related to occupants' subjective feedback. 

Drawing from the building life cycle, the stakeholders who are most relevant to occupant-centric KPIs 

include building designers, occupants, building managers, and building owners. From the perspective of 

these stakeholders, the review identified 22 thermal KPIs, 11 air quality KPIs, 10 acoustic KPIs, and 17 

visual-lighting KPIs.  These KPIs quantify the occupants’ comfort, health, productivity, and well-being 
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(Sleiman et al., 2024). Comfort-related KPIs are the most popular KPIs. Dry-bulb air temperature, CO2, 

sound level and illuminance are the most required input data for thermal, air quality, acoustic, and visual 

KPIs, respectively. Although KPI calculation formulas exist, challenges persist due to unclear definitions 

and a lack of specified sensor/ meter data requirements, particularly on the whole building level. Further 

work is needed to specify the methodology to compute these occupant-centric KPIs.  

Building Smart Technology KPIs 

Two aspects of smart building technology were considered: Interoperability and Transfer Learning. 

The significance of interoperability testing in achieving seamless integration is widely acknowledged. To 

address this issue, interoperability testing is required using common specifications and universally ac-

cepted quantifiable KPIs. Various methodological approaches exist for interoperability assessment in the 

smart grid domain (Ginocchi et al., 2020). For example, Ford et al. (2007) developed an i-Score method-

ology to assess the interoperability of networks of systems. This methodology abstracts the systems as 

an architecture framework that describes how these systems work. Based on the architecture data, it 

employs graph optimization, and interoperability theory to offer a comprehensive assessment of interop-

erability. Van Amelsvoort et al. (2015) then adapts this i-Score methodology for interoperability testing in 

the smart grid domain. However, the prevailing practice of devising ad-hoc interoperability testing proce-

dures, without embracing well-structured methodological approaches, can result in issues such as irre-

producibility, subpar quality, prolonged development times, and increased costs (Ginocchi et al., 2020). 

Despite the evident importance of interoperability, progress in initiatives to enhance the current situation 

is sluggish. 

Transfer learning (TL) is a powerful technique in machine learning, where a model trained on a specific 

task (i.e., source task, or a source building) can be applied to a new task (i.e., target task, or a target 

building) that shares similarities with the original task, whether that is within the same domain or across 

different domains. In the context of smart buildings technology, implementing a transfer learning strategy 

can improve model performance, reduce the model computation time, and lower the cost of deploying 

smart algorithms. This could be for use cases such as load prediction, occupancy detection, activity recog-

nition, building dynamics, advanced control systems and fault detection and diagnosis. The traditional TL 

process includes 1) identifying the best source domain (building) using similarity metrics; 2) applying TL 

solutions; and 3) assessing TL performance.  

From the analysis of different applications in the built environment, two different approaches were identi-

fied: a semantic approach and a data-based approach. The semantic approach uses features, metadata, 

and semantics to study the similarities between two buildings, while the data-based approach analyses 

the datasets available, trying to assess similarities between the source and the target datasets, using both 

features and time-series data.  

The assessment of TL performance requires the definition of several metrics to assess building similarity 

(i.e., domain similarity) and machine learning performance. These are employed to compute KPIs that 

quantify TL advantages in terms of performance, speed, data requirements and reliability. A number of 

KPIs have been introduced by Zhu et al. (2023), to quantify the performance of TL for building applications 

such as jumpstart, transfer ratio, asymptotic performance, time to threshold, performance with fixed num-

ber of epochs, performance sensitivity, necessary knowledge amount, and necessary knowledge quality. 

However, each KPI needs to be contextualized in the framework of the TL application.  

By way of example, in the Load Prediction application, several common KPIs were used to evaluate the 

performance of prediction models (Johra et al., 2023b) and the consequent improvement when a TL 

framework is implemented. These KPIs include RMSE improvement (Lee and Rhee, 2021), CV-RMSE 

improvement (Ding et al., 2023) and MAPE improvement (Lu et al., 2021), Moreover, various techniques 

have been used to assess building similarity, such as Dynamic Time Warping (Peng et al., 2022), Simi-

larity Measurement Index (Lu et al., 2021), Maximum Mean Discrepancy (Li et al., 2022) and Mahalanobis 

Distance (Jin et al., 2022). 
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Building Energy Saving and Maintenance KPIs 

Energy performance indicators are often integrated into rating and certification systems based on build-

ing energy codes and standards. Li et al. (2020) summarized the most common energy performance 

indicators at the building level and introduced a set of system-level KPIs that include four major end-use 

systems and their eleven subsystems.  

Building maintenance encompasses a range of activities aimed at preserving and repairing the function-

ality, safety, and aesthetics of a building and its components. Maintenance costs can account for up to 

65% of annual facility management costs (Hosamo et al., 2022). EN13306:2017 (2017) introduces three 

types of maintenance: Improvement maintenance, predictive maintenance, and corrective maintenance. 

Based on these maintenance types and the comprehensive list of maintenance KPIs in EN15341:2019 

(2019), the review identified eight categories of KPIs: physical asset management (20 KPIs), information 

communication technologies (20 KPIs), health safety and environment (22 KPIs), maintenance manage-

ment (22 KPIs), people competence (20 KPIs), maintenance engineering (19 KPIs), organization and 

support (30 KPIs), and administration and supply (29 KPIs).  Maintenance KPIs relating to Fault Detection 

and Diagnosis were also identified (Chen et al., 2023), and classified into three further categories: general 

evaluation metrics for FDD applications (8 KPIs), evaluation metrics for data-driven classification prob-

lems (5 KPIs), and statistical significance tests that assist the evaluation of classification problems (5 

tests). 

Energy Flexibility KPIs 

Drawing inspiration from the EU Smart Readiness Indicator (SRI) assessment scheme, a review was also 

done of KPI’s for benchmarking a buildings ability to flexibly manage its energy consumption in response 

to grid needs. 29 generic KPIs and 48 data-driven KPIs were identified for assessing demand response 

and building energy flexibility (Li et al., 2023). These KPIs relate to power peak shedding, average power 

load shedding, peak power/energy rebound, valley filling, load shifting, demand profile reshaping, energy 

storage capability, demand response energy efficiency, demand response costs/savings, demand re-

sponse emission/environmental impact, grid interaction, and impact on indoor environment quality. These 

KPIs usually have low complexity, but most of them (81%) require a baseline (counterfactual energy con-

sumption scenario without demand response) to be calculated. The most popular of these KPIs are related 

to the energy efficiency of a demand response action, the load shifting capacity (typically from high-price 

periods to low-price periods), and peak power shedding. 

In summary, the literature overview collected 60 occupant-centric KPIs, 40 KPIs for transfer learning, 274 

KPIs for building energy and maintenance, and 77 KPIs for building-grid interaction, resulting in a total of 451 

KPIs Figure 3.2). 

 

Figure 3.2: Overview of the collected KPIs. 
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3.1.1 KPIs and stakeholder needs 

The popularity of these KPIs in the research community does not necessarily reflect their applicability, desir-

ability and usefulness for industry stakeholders. A survey was conducted, seeking input from stakeholders 

on essential aspects of building operational performance. The survey was designed based on the proposed 

KPI framework, incorporating three building performance goals: 1) to improve buildings’ energy saving and 

operation, e.g., energy efficiency, operational cost, environmental impact, and maintenance. 2) to satisfy 

occupants’ needs, e.g., comfort, health, well-being, and convenience, and 3) to satisfy the grid’s requirements 

and provide building-to-grid services, e.g., grid stability and demand response. Each general goal was further 

subdivided into four sub-performance/technical aspects. The survey employed the Analytic Hierarchy Pro-

cess to gauge stakeholder opinions on the relative importance of two performance aspects and to calculate 

their corresponding weights. 

A total of 137 stakeholders received the questionnaire, with 65 stakeholders completing the survey (47.4% 

response rate, predominantly building managers). The results indicate that stakeholders typically prioritize 

occupants' needs the most, followed by the building's energy efficiency and operation. Stakeholders exhibited 

the least concern for the grid’s requirements. Within the occupants' needs category, occupant health 

emerged as the most important aspect and sub-aspects like mitigating respiratory disease transmission, 

followed by comfort. For building operations, stakeholders considered the downtime of the building system 

as the most critical consideration, while operational cost ranked as the least important. In contrast, for building 

energy flexibility, all technical aspects held similar importance, encompassing power peak shedding, en-

ergy/average power load shedding, peak power/energy rebound, valley filling, load shifting, demand profile 

reshaping, and energy storage capability. However, the study also unearthed notable variations in priority 

among individual stakeholders. Specifically, only 52% ranked occupants' needs highest, while a smaller frac-

tion (14%) deemed the grid's requirements their foremost concern (Figure 3.3). This may be caused by many 

factors, such as stakeholder type, the building functions, policy, and country. 

 
Figure 3.3: Stakeholders priorities relating to different building performance aspects. 

3.1.2 KPI calculation feasibility case-studies 

The availability of KPIs (and their associated calculation formulas) also does not necessarily reflect the ability 

to source required data and calculate these KPIs in typical buildings.  A comprehensive evaluation was per-

formed to ascertain the feasibility of computing various KPIs across five office buildings (four located in the 

Netherlands and one in Switzerland). The analysis used historical BMS data and focused particularly on 

occupant-centric and energy flexibility metrics.  

The findings underscore challenges associated with data availability for KPI computations. Thermal comfort 

KPIs are found to be the most readily calculable among occupant-centric KPIs, while those related to building 

lighting and acoustics present significant challenges when using BMS data. Similarly, within energy flexibility 

KPIs, only those dependent on total energy demand are generally calculable. On average, only approxi-

mately one-quarter of the collected KPIs could be reliably calculated for the case study buildings (Figure 3.4). 
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Figure 3.4: Percentage of KPIs that are computable using historical BMS data from the case buildings. 

Furthermore, a detailed assessment of six KPIs, namely Predicted Mean Vote (PMV), Predictive Percentage 

of Dissatisfaction (PPD), Percentage of CO2 exceeding the threshold (PCO2), Energy Consumption per 

square meter (EC), Flexibility Factor (FF), and Load Factor (LF), was conducted to gauge the performance 

of the case study buildings. While these KPIs can be computed, their definitions lack consideration for the 

complexity of real-world building scenarios, introducing ambiguity and limiting reliability in calculations.  

For example, the PMV index relies on indoor air temperature as an input parameter. Amongst the case-study 

buildings, one building has forty indoor air temperature sensors distributed in various rooms, while another 

one has only one indoor air temperature sensor. This variation in the number and placement of indoor air 

temperature sensors can lead to bias in the PMV calculation when comparing the thermal performance of 

two buildings. Several key considerations are highlighted:  

• Input data quality: KPI definition should specify input data quality, such as sensor accuracy, sampling 

frequency, maximum amount of missing data points, and outlier management. 

• Spatial factors: KPIs should account for the spatial distribution of sensors to ensure a representative 

measurement of the entire space. 

• Temporal factors: KPIs should describe the time resolution for calculations, ranging from annual to 

sub-hourly intervals. 

• Data aggregation factors: KPIs should indicate how data is aggregated in the temporal dimension, 

from lower-level (e.g. minute-level sensor data) to higher-level intervals for KPI calculations and, in 

the spatial dimension, how to aggregate sensors over large buildings with distinct thermal zones. 

Different aggregation methods may affect the calculations.  

Spatial factors are the most influential for PMV, PPD, and PCO2 calculations, while temporal factors and data 

aggregation factors play a more critical role in FF and LF computations. Importantly, the significance of these 

considerations depends on the specific KPIs, building characteristics, performance goals, sensor technolo-

gies, and their interplay. This again underscores the need for further research to standardize KPIs, ensuring 

a reliable benchmarking process for assessing building performance in practical applications. 

Another assessment was done relating to the ability to source the required data for calculating relevant KPIs 

– with particular focus on demand flexibility. 16 flexibility related datasets were collected, covering a wide 

variety of building energy flexibility studies. They included data from real monitored buildings, hardware-in-

the-loop setups, and numerical simulations with different building typologies. Most datasets were associated 

with HVAC related demand response schemes in electrical grids (e.g. testing time-of-use and other tariff/pric-

ing programs, and testing load shifting and load shedding schemes). Only a few were connected to district 

heating networks.  

Table 3.1 compares the variables required for calculating the different data-driven building energy flexibility 

KPIs and the available variables in the collected datasets.  It is clear that there is a poor match between 
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required data and available data, for most flexibility related KPIs. It is also noted that the value of a dataset 

(for KPI computation) does not necessarily increase with the number of variables it contains. While some 

datasets have many variables, they may not have the most commonly required ones for demand response 

assessment (Li et al., 2023, Johra et al., 2023a). 

Table 3.1: Input variables required by the KPIs vs available ones in the collected B2G datasets (Li et al., 2023, Johra et 
al., 2023a). 

 

Based on KPI data requirements and data availability, the three most easily calculated energy flexibility KPIs 

were (i) demand response energy efficiency, (ii) demand profile reshaping and (iii) energy/average power 

load shedding.  

3.2 Data sets and data-related challenges 

Collecting the right data, with sufficient data quality is challenging but essential for generating useful KPIs. 

More generally, data quality is an issue for all reporting and analytics services. O’Reilly (2020) surveyed 

1,900 people working in the field of Artificial Intelligence, to get their perspectives on the data quality issues 

that they face.  A wide range of data quality issues were identified (Figure 3.5). 

 
Figure 3.5: Primary data quality issues (in relation to AI) faced by respondents’ organisations (Source: O’Reilly, 2020). 

 

Primitive variables 
% required by 

KPIs 
% available in 

datasets 

Event timing 37.66% 18.75% 

Energy consumption 35.06% 81.25% 

Power demand 32.47% 6.25% 

Event request action 24.68% 37.50% 

Price signal 16.88% 50.00% 

Energy generation 12.99% 25.00% 

Event request size 11.69% 0.00% 

Indoor temperature 5.19% 93.75% 

Thermostat setpoint 5.19% 62.50% 

Emission signal 3.90% 12.50% 

Storage volume 2.60% 0.00% 

Monetary incentives 2.60% 0.00% 

Occupancy 1.30% 56.25% 

Indoor CO2 1.30% 12.50% 
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3.2.1 Interviews and survey results 

Annex 81 participants interviewed leading practitioners to further understand industry pain points and aspi-

rations around data quality. Sixteen industry stakeholders were interviewed representing each of Software-

as-a-Service (SaaS) platform providers, design consultants, building owners, hardware suppliers and an en-

ergy retailer.   

Various interview quotes, that incapsulate stakeholder sentiment on data quality and data management, are 

illustrated in Figure 3.6. The critical importance attributed to data quality and data management was striking.  

Improving data quality and data management practices was seen as one of the key actions required to foster 

industry growth for data-driven smart buildings.  

The views expressed in these interviews form some of the logic behind the policy recommendation to “Es-

tablish Digital Ready Certification” (see Section 6.3 and Section 1.3). 

A survey was also conducted to explore perspectives, across participants in the Annex, about the main chal-

lenges involved in adopting data-driven control solutions in buildings. Twenty-one (21) people responded to 

the survey. The survey asked respondents to rank from 1 to 7 some of the most common data challenges 

involved in data management in buildings. Results are illustrated in Figure 3.7 for both (i) the respondents 

number one major concern and (ii) a weighted score reflecting the relative importance (ranking) assigned to 

each issue. 

“Data labelling and identification of variables” and “Data retrieval and sensor accuracy” were identified as 

key issues with “Inadequate or absent BAS systems” and “Non-calibrated or missing sensors” also being 

important. Participants were asked to provide further details about their ranking of data-related issues. The 

respondents consistently mentioned topics relating to data labeling, organization, retrieval, calibration, etc., 

as the main obstacles for the deployment of data-driven solutions. 

3.2.2 Data repository 

Noting the critical importance of data for researchers and for software product developers, Annex 81 

participants created the ‘Building Data Genome Directory’ (https://buds-lab-building-data-directory-meta-

directory-s0imdd.streamlit.app/ or in spreadsheet version at https://buildingdatadirectory.org/) .  This 

directory provides links to existing publically available datasets that can be used to develop and validate 

energy productivity software applications. It is described by Jin et al. (2023b). 

Its primary objective is to facilitate data-driven research to improve urban building energy efficiency, support 

regional energy planning, and enable effective policy formulation. By consolidating datasets, the directory 

significantly enhances the ability for researchers and policymakers to analyse real-world building perfor-

mance and implement targeted interventions. 

The datasets were consolidated from a comprehensive exploration of sources, including governments, re-

search institutes, and online energy dashboards (Jin et al., 2023a). The directory cites more than 70 datasets 

encompassing various data types, including building energy ontologies, energy models, energy and water 

usage data, electric vehicle information, weather data, building information, text-mined research data, build-

ing images, fault detection diagnostics, and occupant data. These datasets cover multiple spatial scales 

(meter-level, building-level, and community-level) and temporal resolutions (ranging from yearly to minute-

by-minute intervals).  

The aim is to provide a one-stop-shop for people to discover avaliable data-driven smart buildings datasets.  

The directory incorporates a crowdsourcing mechanism that allows users to suggest additional datasets for 

inclusion - in the hope that researchers will contribute to the directory by providing links to their datasets. 

 

. 

https://buds-lab-building-data-directory-meta-directory-s0imdd.streamlit.app/
https://buds-lab-building-data-directory-meta-directory-s0imdd.streamlit.app/
https://buildingdatadirectory.org/
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Figure 3.6: Industry stakeholder feedback reflecting on data quality and data management. 
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Figure 3.7: Importance ascribed to various data issues when deploying model predictive control (MPC) – Left: Frequency of being ranked as most important issue and Right: 
Weighted average ranking. 
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4. Energy Optimisation Applications 

Once suitable quality data is available and accessible, it is possible to deploy energy productivity software 

applications (see Figure 1.2).  Annex 81 research and state-of-the-art reviews (associated with some of the 

important energy productivity applications that can be deployed in smart buildings) are summarized in this 

Section. 

4.1 Fault Detection and Diagnosis (FDD) 

Fault Detection and Diagnosis (FDD) software is used to identify and diagnose faults (problems) in the systems 

and equipment operating in a building. FDD utilizes specialized algorithms to analyse data, from sensors and 

equipment, to identify and pinpoint the problems.  This can be used by facilities managers and contractors to 

assist with maintenance and repair of installed equipment. It is somewhat analogous to a medical doctor using 

diagnostic tests to help diagnose illness in patients.  In this analogy, FDD software is the building’s AI doctor.  

Rectification-works (often by contractors) would likely be required to use the insights obtained, to fix the prob-

lems identified.   

Traditional FDD will use logical if/then rules and decision trees (e.g. Figure 4.1) 

 

Figure 4.1: Example of possible diagnoses for alarms associated with faults in VAV boxes (source: Smith, 2006). 

In contrast, data-driven FDD is defined as software that is trained or built from data using machine learning or 

multivariate statistical analysis methods (Chen et al., 2023). Typically, ‘ground truth’ data of what is considered 

normal and/or good operation of the building is required. The data-driven algorithms then learn what nor-

mal/good operation is, which can then be used to detect when something is deviating from this desired oper-

ation. It is noted that not all FDD software reported here is data-driven FDD.   
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Across numerous buildings, FDD software services have been shown to reduce energy consumption by 

around 9%, on average, with typical paybacks of two-years in portfolio implementations (Lin et al., 2022). 

4.1.1 FDD Methods 

A literature review was undertaken covering the process of data-driven FDD, the systems studied, and the 

evaluation metrics employed. The data-driven FDD process encompasses several steps, including data col-

lection, cleansing, preprocessing, baseline establishment, fault detection, diagnostics, and potential fault prog-

nostics, as illustrated in Figure 4.2. 

 

Figure 4.2: A General Data-driven FDD Process. 

Several machine learning algorithms/methods can be used in the FDD process, such as Clustering, Decision 

Trees, Principal Component Analysis, Support Vector Machine, Support Vector Regression, Neural Networks, 

Bayesian Networks, Hidden Markov Models, Generative Adversarial Networks, and Ensemble Learning. 

These methods are reviewed by Chen et al. (2023). While various data-driven methods have been investi-

gated, there are few studies that compare the performance between methods in different categories (e.g. 

expert rule-based vs data-driven, supervised vs unsupervised).  

Our review found that data-driven FDD methods have been applied to various HVAC components and sub-

systems for detecting and diagnosing a range of faults. For large buildings, the focus has often been on Air 

Handling Unit – Variable Air Volume (AHU-VAV) systems, fan coil units (FCU), chillers, and boilers. 35% of 

studies were dedicated to secondary AHU-VAV systems, with chillers following closely at 32%. Studies on 

AHU-VAV secondary systems (crucial for heating and cooling across multiple zones), were often presented 

with actuator and equipment faults such as those in dampers, cooling/heating coil valves, fans, and air ducts.  
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Chiller faults were extensively studied, in the context of data-driven methods in Vapor Compression Cycle 

systems. Two categories were identified for chiller faults: (1) Local faults which include faults like condenser 

fouling, reduced condenser water flow, non-condensable in the refrigerant, and reduced evaporator water flow, 

and (2) System faults such as refrigerant leakage/ undercharge, refrigerant overcharge, and excess oil.  

Significant focus (accounting for 17% of the reviewed studies), has been directed towards whole-building level 

faults. The intricacies at this level arise from a confluence of factors such as building dynamics, external cli-

matic conditions, system operating schedules and occupant comfort requirements. These collectively give rise 

to a myriad of building energy consumption patterns, which are not always straightforward to discern. 

Regarding the sources of data used in developing these FDD methods, the literature revealed a mix of simu-

lation data, laboratory experiments, and field measurements from real buildings. Among the papers reviewed, 

48% used lab experiment data, 20% used simulation data, and 32% used real building data. The majority of 

studies relating to whole building applications relied on real field measurement data, while system-level VRF, 

AHU and Chiller applications mainly relied on laboratory data. 

Evaluating the efficacy of data-driven FDD is crucial. The literature presents a gamut of dedicated metrics to 

achieve this. Broadly, these metrics fall into three categories: 

• General Evaluation Metrics: These encompass fundamental measures like true positive rate (TPR), 

false negative rate (FNR), and correct diagnosis rate (CDR). 

• Classification Problem Metrics: Tailored for data-driven classification problems, these include confu-

sion matrix, F-measure (or F-score), Receiver Operator Characteristic, and Area Under the Curve 

metrics.  

• Statistical Significance Tests: Useful for comparing different classification models in FDD, common 

tests include the t-test, McNemar's Test, and the Friedman Test. 

Based on findings from the review, some of the identified ongoing focus areas and challenges – required to 

further the development and market adoption of data-driven FDD – include:  

• Real-building deployment 

• Performance Evaluation, Benchmarking, and Fault Impact Analysis 

• Scalability and Transferability 

• Interpretability 

• Cyber Security and Data Privacy 

• User Experience 

Further details on these challenges and the literature review are presented in Chen et al. (2023). 

Based on the summarized literature, data repository, and existing FDD software tools, participants of this ac-

tivity developed a roadmap (see Section 6.2), aiming to guide industry stakeholders through the ecosystem of 

Fault Detection and Diagnosis.  

4.1.2 Test Cases and Software Review 

A persistent challenge to ongoing development of FDD is a lack of common datasets and algorithm test meth-

ods. These are essential to support the vetting of new algorithms. Unfortunately, available public datasets are 

generally limited to a few types of HVAC equipment, and the fault types and the range of faulty data are small. 

For example, the ASHRAE RP-1043 project included 8 fault types for chillers (Braun J., 2006). The ASHRAE 

RP-1312 project included 13 faults for air handling units (Wen and Li, 2012). For both datasets, each fault type 

contains faulty data ranging from one day to a few days within one typical operational season. 

To bridge this gap, researchers at Lawrence Berkeley National Laboratory developed a large and diverse 

database of FDD datasets. It includes data from 7 HVAC systems, including (i) a single duct AHU system, (ii) 

a packaged rooftop unit (RTU), (iii) a dual duct AHU system, (iv) a fan coil unit (FCU) system, (v) a fan power 
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unit (FPU), (vi) a boiler plant, and (vii) a chiller plant. Data for most systems spans faulty operation across a 

full year. The total fault cases number 257 (i.e., faults at different severity levels), with an associated 8 billion 

data points. The FDD datasets and associated inventories are publicly available at https://faultdetec-

tion.lbl.gov/.  The FDD data set is documented at Granderson et al. (2020) and Granderson et al. (2023). Frank 

et al. (2019) presents a systematic framework for evaluating the performance of FDD algorithms.  

The ecosystem of commercially available FDD software tools was also reviewed. A diverse range of FDD 

software products was identified, including (i) products that are hosted in cloud-based and/or on-premise serv-

ers (external to the BMS), and (ii) products that can be run from desktop applications, or embedded in equip-

ment (Granderson et al., 2018). Building management systems (BMS) often offer collections of rules that are 

packaged and sold as FDD libraries. Some examples of available software and corresponding vendor infor-

mation is provided by Wen et al. (2025). 

4.2 Model Predictive Control (MPC) 

Model-based Predictive Control (MPC) is a promising application for improving the performance and operation 

of building HVAC systems. In this control approach, a suitable mathematical model (digital twin) of the building 

and its systems, provides forecasts of how the building will behave over the forecast future time horizon.  This 

allows a supervisory controller to schedule equipment in advance, to optimise for comfort and energy savings. 

For example, if the forecast is for warm weather over the day, then a supervisory controller can prevent heating 

equipment from turning on first thing in the morning. The general process is illustrated in the Figure 4.3 

schematic.  

 

Figure 4.3: Schematic representation of model-based predictive control. 

MPC is useful in virtually any situation where knowledge of the future, within a reasonable timeframe, allows 

for better decision-making. For example, a solar radiation forecast enables the planning of electricity use based 

on the anticipated electrical production of solar panels.  Foreknowledge of occuapancy can also be used to 

manage when and where to provide HVAC services.  MPC can also be used to optimise energy storage in 

Building-to-Grid applications (see Section 4.3)  

As illustrated in Figure 4.3, the key components of the Model Predictive Controller are: 

• Control-oriented model. This is a simplified mathematical model of the building used to forecast the 

future state and the energy consumption of the building - if different control actions were to be taken.  

The control-oriented model is called up by the MPC controller/optimiser in an iterative fashion to 

https://faultdetection.lbl.gov/
https://faultdetection.lbl.gov/
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explore alternative supervisory control actions until it finds an optimal solution for the given objective.  

Noting that the control oriented model is an approximate model, it will typically be continuously 

recalibrated by comparing its forecasts with actual outcomes measured in the building. 

• MPC controller: (“optimiser” and “solver” are synonimous words used in the text below).  This is the 

assembly of control algorithms that interogate the control-oriented model to determine the best course 

of action – taking into account forecast externalities. It optimises according to an objective function or 

reward signal. This cost/reward function can include KPIs relating to total energy cost, energy use, 

electric peak demand, GHG emissions, thermal comfort limits, wear and tear of equipment, etc. 

• HVAC controller:  This is the physical control equipment in the building. It activates the instantaneous 

response of the HVAC equipment to achieve control-setpoint conditions in the building (for example 

using appropriate "PID" loops (proportional, integral, derivative control)).  In itself, the HVAC controller 

has no visibility of the future, and can not optimise in the light of forecasts or higher level building 

awareness.  The MPC controller passes a time series schedule of new values for the setpoints to the 

HVAC controller, to achieve the optimisation (rather than have the HVAC controller controlling to a 

single fixed setpoint). 

• Metering and sensors (data collection):  A feedback loop is provided by sending meter data and 

sensor data from the building to the control-oriented model.  This allows the simplified control-oriented 

model to be regularly recalibrated so that it does not drift too far from reality. Diverse data streams 

may be used, including weather conditions (ambient temperature, solar irradiance, humidity, etc.), 

sensor data from the occupied space (temperature and other IEQ data, occupancy etc), and equipment 

operational data (taken from the building’s BMS and/or IoT sensors).  

Serale et al (2018) conducted a review of the 

various implementations of MPC reported in 

the literature. They focussed on the potential to 

enhance building and HVAC system energy 

efficiency. They found that MPC 

implementations gave energy savings ranging 

from 0% to 40% (Figure 4.4). 

A related alternative data-driven supervisory 

control approach is based on Reinforcement 

Learning (RL).  The RL approach has the 

potential to avoid the need for a control-

oriented model and the need for supervised 

learning of building performance.  It does this 

by using a more trial and error based approach 

that explores the state-space, to find the 

control action (policy function) that maximises 

the given reward function. The difficulty for RL 

approaches is in obtaining sufficient data to 

explore the state-space and derive an 

appropriate control policy. 

Annex 81 research on data-driven control 

focused on reviewing and benchmarking the 

performance of MPC and RL controllers using 

common data libraries and test environments. 
 

Figure 4.4: Number of papers claiming various levels of 
energy savings, when implementing model predictive 
control (MPC) in buildings Serale et al (2018). 
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4.2.1 Test Cases and Algorithm Benchmarking 

Data from Test Cases 

Annex 81 participants collaborated to compile a diverse range of datasets that could be used for developing 

and testing advanced control applications. Initially, more than twenty test cases were collected for considera-

tion from all the participants in the Annex who provided the necessary information through a common template. 

These cases corresponded to real buildings, from experimental/lab setups and from simulated buildings. Six 

of these were chosen as exemplar test cases from real buildings, where both the available dataset itself and 

the metadata (i.e. relevant contextual information) were of high quality.  

The datasets have been made public, and are available for download at the Mendeley Data repository at 

https://data.mendeley.com/datasets/xztfbtsgys/3.  The datasets are described in detail in an open access data 

paper (Sartori et al., 2023).  Some features of the collected datasets are provided in Table 4.1. Readers are 

encouraged to go to the references if they would like to access these datasets.  

Table 4.1: Annex 81 exemplar MPC datasets. 

Location Building Typology HVAC and other equipment 

Oslo, Norway 
3,800m2, eight story office build-
ing 

District heating. 

Trondheim, Norway 
‘ZEB Living Lab’ detached 
house 

Either floor heating, a central radiator, or air ven-
tilation 

Lyngby, Denmark ‘FlexHouse’ detached house Hydronic heating 

Varennes, Canada 2,100m2, two story library 
110.5 kW BIPV solar with heat recovery, 
geothermal heat pump with hydronic heating 

Berkeley, USA 
‘FLEXLAB’ testbed representa-
tive of 57m2 commercial office  

Single-zone variable-capacity AHU with chiller 
and boiler. 3.6kW Solar PV and 7.2kWh battery 

Singapore 46m2 testbed office Variable air volume AHU 

 

BOPTEST Benchmarking Test Environment 

Annex 81 participants also contributed numerous studies, demonstrating the value and advantages of various 

control approaches in different buildings and use-cases. While valuable in their own right (for identifying prom-

ising approaches), these individualized case studies are difficult to compare and contrast.  This makes it diffi-

cult to generalise findings about the advantages and disadvantages of different approaches when used in 

different scenarios.  

So, in addition to providing data for researchers, the Annex conducted benchmarking studies to compare the 

efficacy of various data-driven controllers in a controlled test environment. The Building Optimisation Testing 

(BOPTEST) framework (Blum et al., 2021), was used for this purpose. More detail on BOPTEST can be found 

at the homepage at https://boptest.net.   

Rather than use real buildings for testing, the BOPTEST framework uses simulated virtual buildings.  This 

enables software developers and researchers to test their algorithms without interrupting the operation of a 

real building.  And it provides a consistent test environment for everyone.   

The virtual buildings (for benchmarking purposes) are called emulators. These are high-fidelity simulation 

models of specific building systems which are used to replicate, as closely as possible, the behaviour of a real 

system at appropriate time scales for building operation. It enables testing and evaluation of advanced control 

strategies in a closed loop (i.e., “offline”, within a confined computer simulation).  This is the next best thing to 

a real building. These emulators are more sophisticated/detailed models than the control-oriented models de-

scribed previously. 

A visualization of the BOPTEST test environment is shown in Figure 4.5.   

https://data.mendeley.com/datasets/xztfbtsgys/3
https://boptest.net/
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Figure 4.5: Elements of a test environment for benchmarking control performance. 

The BOPTEST test environment encapsulates the building emulator with any boundary condition data and 

parameters needed to run the model.  It also contains the simulation software and solvers needed to integrate 

the simulation model through time.  The test environment also calculates relevant KPIs, independent from the 

MPC software developer, to unambiguously enable comparison between different products/ solutions.  The 

BOPTEST environment has an API which the user can use to manage tests and input/output data between 

the controller (that is being benchmarked) and building simulation model. 

BOPTEST currently offers a selection of eight publicly available test case emulators: (i) BESTEST Air, (ii) 

BESTEST Hydronic, (iii) BESTEST Hydronic Heat Pump, (iv) Single Zone Commercial Hydronic, (v) Two Zone 

Apartment Hydronic, (vi) Multizone Residential Hydronic, (vii) Multizone Office Simple Air, and (viii) Multizone 

Office Simple Hydronic.  These test cases are written in Modelica and use open-source Modelica libraries 

extending from the Modelica IBPSA Library (https://github.com/ibpsa/modelica-ibpsa). Test cases may also 

use Spawn (Wetter et al., 2024) to integrate envelope models written for EnergyPlus with HVAC and control 

models written in Modelica.  Each test case contains an embedded baseline controller, so that test controllers 

can overwrite any subset of control signals at the supervisor or actuator levels.     

4.2.2 Control-Oriented Modelling Techniques 

Key to the efficacy of model predictive control (MPC) is the forecasting performance of the control-oriented 

model, that is embedded with the MPC controller. 

Modelling approaches are traditionally classified using the categories of "white-box," "grey-box," and "black-

box" models (Figure 4.6). 

 

Figure 4.6: White-box, gray-box and black-box models (image credit: Benedetto Grillone, 
https://benedettogrillone.substack.com). 

https://github.com/ibpsa/modelica-ibpsa
https://benedettogrillone.substack.com/
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White Box Models 

A white-box model is based on parameters with clear physical meanings. The equations rely on an aggre-

gation of well-understood physical phenomena, such as energy balance equations at specific locations, heat 

transfer coefficient correlations, and radiative heat transfer models. Both the equations and their associated 

parameters are clearly and explicitly derived. They are often created using building performance simulation 

tools such as EnergyPlus, TRNSYS, and Modelica. White-box models have several advantages: 

interpretability and extrapolation under unusual or unforeseen situations. White-box models can also be 

calibrated with real measurements: temperatures, flow rates, electric power measurements, etc. 

Emulators in the BOPTEST framework are white box models, as they are arguably the closest match to an 

actual building. However, their set up complexity and the long computational time required to run them, will 

typically prevent them from being a control-oriented model. 

Black Box Models 

In contrast with white-box models, black-box models describe mathematical relationships between a set of 

inputs and outputs. They are purely data-driven, and their parameters do not have an explicit physical meaning. 

There are a wide variety of black-box modelling approaches, including: 

• Linear and non-linear regression: The oldest black-box modelling approach, the least squares method 

involves finding the coefficients of a function (which can be either a linear or non-linear function of the 

inputs) that will minimise the difference (typically measured using the mean square error as a 

parameter) between predicted values and measured output variables. 

• Time series methods: Time-series models are a mathematical framework in which the output variable 

depends on past values of the output variable collected at regular intervals (autoregressive model) 

and on present and past values of input variables (exogenous variables). 

• Machine learning methods: including (i) decision trees, (Yu et al., 2010), (ii) neural network models 

(Afram et al., 2017; Macarulla et al., 2017), (iii) support vector machines (Dong et al., 2005), (iv) 

Gaussian process regressions (Maddalena et al., 2022), (v) gradient boosting models (Miller et al., 

2020), etc. 

• Deep learning methods (LeCun et al., 2015): including (i) recurrent neural networks (Fan et al., 2019), 

and (ii) long short-term memory (LSTM) networks (Mtibaa et al., 2020). 

Black-box models can be rapidly deployed, require less knowledge about the building systems, and they can 

achieve a high degree of accuracy. However, black-box models also have shortcomings. They require a 

significant amount of high-quality data for their creation, some expertise and skill is required in selecting 

appropriate input variables, and they lack extrapolation capability. 

Grey Box Models 

A grey-box model represents a compromise between a white-box and a black-box model. While it does not 

include as many details as a white-box model, its parameters still retain physical meaning, typically as 

"effective" or “equivalent” values. However, unlike white-box models (where parameters are derived from 

physical properties or the building’s geometry), a grey-box model's parameters are calibrated from collected 

data, akin to a black-box model. 

The classic grey-box model (albeit not the only one) is a thermal resistive-capacitive (RC) network. Figure 4.7 

shows an example of an RC network for a small building. The nodes 1, 2 and 3 represent respectively the 

temperatures of the indoor air, the inner walls and floors and the building envelope. The thermal capacitances 

represent the effective energy storage capacity of these components, and the resistances represent the 

effective thermal resistance between them, including the resistance between specific nodes and the outdoor 

air. For instance, R1ext represents the equivalent thermal resistance between the indoor air and the ambient air 

(this kind of direct link can be the result of infiltration and heat loss through the fenestration). QSG, QIG and 

Qheating respectively represent the thermal contributions of solar gains, internal gains and the heating system. 



 
 

 52/91 

 

Figure 4.7: Example of grey-box model: RC representation of a simple building. 

In this case, the RC network in Figure 4.7 is a “third order” network, as each capacitance defines a differential 

equation. The actual value of these parameters (e.g., the resistances in K/W or the capacitances in MJ/K) may 

be calibrated by collecting data from a real system. 

There is an element of subjectivity in defining an RC network, where other parameters could have been 

included (increasing or decreasing the “order” of the network). However, it is important to remember that the 

primary objective of this type of model is only to offer a simplified representation that enables the MPC 

controller to make short time-horizon decisions.  

Characterising uncertainty stemming from sensors, model approximations, and unrecognized disturbances is 

important for implementing sensor-driven and real-time controllers. Grey-box models provide a useful 

framework for handling such uncertainties, as they can be formulated as SDEs (stochastic differential 

equations, i.e., differential equations that incorporate randomness). These SDEs can contain (i) a diffusion 

term (to account for modelling approximations, account for un-modelled inputs and noise in measurement of 

input variables), and (ii) a noise term (to account for noise in measurements of output variables). The use of 

SDEs is an evolving area of research. 

4.2.3 Data-Driven Control Benchmarking Studies  

Five benchmarking studies were performed by Annex participants.  The scenarios investigated are detailed 

in Table 4.2. 

Table 4.2: Annex 81 Benchmarking Studies 

Study Study Objective 
BOPTEST Test 

Case 
Control Optimization 

Control Oriented 
Model (for MPC) 

1 Evaluate the 
performance and 
scalability of an MPC 
framework across 
different buildings 

1. BESTEST 
Hydronic Heat 
Pump 

2. Single Zone 
Commercial 
Hydronic 

Economic optimisation of 
space heating, via room 
temperature setpoint, for 
three price scenarios 
(constant, dynamic, and 
highly dynamic) 

Three-state linear 
RC model (grey-
box) 

2 Compare the 
performance of Deep 
Reinforcement Learning 
(RL) and Model 
Predictive Control 
(MPC) approaches 

BESTEST 
Hydronic Heat 
Pump 

Economic optimisation via 
compressor speed control for 

• Typical heat day 

• Peak heat day 

Using the BOPTEST highly 
dynamic pricing scenario 

Reduced-order 
(1R1C) model 
with regression-
based heat pump 
model (grey-box) 

3 Compare the 
performance of 
alternative black box 
control-oriented models 
for MPC 

Multizone Office 
Simple Air 

Energy optimisation over a 
week in summer and a week 
in winter 

Various black-box 
(Linear, Multilayer 
Perceptron, 
LSTM) 
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4 

Demonstrate the 
benefits of a tube-based 
MPC controller for 
managing model 
prediction uncertainties 

BESTEST Air 

Economic optimisation of 
space heating and cooling for  

1. Peak heat day 
2. Typical heat day 
3. Peak cool day, and 
4. Typical cool day. 

first-order thermal 
RC model (1R1C) 

Investigate the benefits 
of incorporating 
predictive information 
into Soft Actor Critic 
(SAC) Reinforcement 
Learning (RL) controller 

Not applicable 

5 Compare Deep 
Reinforcement Learning 
(RL) and Model 
Predictive Control 
(MPC) against true 
optimal control 

Not applicable 
(used bespoke 
test environment) 

Optimisation to a weighted 
reward function including 
energy costs, thermal 
comfort, and control slew 
rate 

Perfect forecast 

 

All studies found that the MPC and RL controllers substantially out-performed the BOPTEST’s rule-based 

control strategies, in terms of providing better thermal comfort for occupants (lower Kelvin Hours (Kh) outside 

of the target comfort thresholds) and reducing energy costs by around 20%. 

Based on the studies performed, it is possible to directly compare performance results for the MPC and RL 

controllers used in Studies 1 and 2, and from a previous study (Arroyo et al., 2022). This is because all of 

these studies used the BESTEST Hydronic Heat Pump test case from BOPTEST with (i) the peak_heat_day 

and typical_heat_day time period scenarios and (ii) the highly_dynamic electricity price scenario.  The 

comparisons are illustrated in Table 4.3 and Figure 4.8.  The best MPC solutions typically outperformed the 

best RL solutions. 

Table 4.3: Comparison of data-driven approaches for the bestest_heat_pump_hydronic test case in BOPTEST. 

bestest_heat_pump_hydronic Peak Heat Day Period Typical Heat Day Period 

Highly Dynamic Electricity Price 

Operational 

Costs 

(EUR/m2) 

Thermal 

Discomfort 

(Kh/zone) 

Operational 

Costs 

(EUR/m2) 

Thermal 

Discomfort 

(Kh/zone) 

Baseline 0.91 8.38 0.41 9.44 

Benchmark (Arroyo et 

al, 2022) 

RL (DDQN) 0.82 2.80 0.51 180.84 

MPC 15 min Step 0.66 1.15 0.28 7.24 

MPC 60 min Step 0.76 2.67 0.30 7.06 

Study 1 (Walnum et 

al, 2020) 

MPC 15 min Step 0.80 0.02 0.37 6.39 

MPC 60 min Step 0.82 1.15 0.34 7.99 

Study 2 (Wang et al, 

2023) 

RL (DDPG) 0.81 0.87 0.35 7.73 

MPC 60 min Step 0.71 0.00 0.31 8.29 

 

These results are from a relatively small number of studies.  Further benchmarking research is required to 

build up the evidence base to cover more buildings and different approaches and to investigate design choices 

for data-driven control.  Collaboration on common test cases is essential to ensure such studies are compara-

ble. Future work should also benchmark solutions on more complex HVAC system designs and more building 

types than performed in this study, as well as in real buildings.  Continued work on BOPTEST and activities 

within IBPSA Project 2 are aiming to address such needs. 
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Figure 4.8: Performance of different data-driven control strategies in the BOPTEST Peak Heating Day (top) and Typical 
Heating Day (bottom), using the ‘Highly Dynamic’ electricity price scenario, in the BESTEST Hydronic Heat Pump test 
case. (Baseline is BOPTEST’s built in rules based controller). 

4.3 Buildings to Grid 

In addition to improving energy efficiency (reducing overall consumption), the IEA identifies the need to ‘enhance 

system-wide efficiency’ (IEA, 2022).  This includes the emerging need for load shifting (i.e. managing the time of 

energy consumption) (IEA, 2023a). Load shifting in buildings can be achieved with various thermal and electrical 

energy storage assets that routinely occur in buildings (e.g. hot water, HVAC, electrical batteries, electric vehicles).  

These assets are known as 'flexible' loads and are capable of being dispatched using modern digital technologies.  

Building energy flexibility strategies (in the form of demand response) enable load control/modulation to provide 

building-to-grid (B2G) services to local energy grids. These services are expected to become a critical resource 

for improving the security of energy systems, as part of the transition to variable renewable energy resources.  In 

their Net Zero Emissions by 2050 Scenario, the IEA is calling for a tenfold increase in demand response availability 

from buildings between 2020 and 2030 (IEA, 2023b). 

Supporting these high-level ambitions, Annex 81 research focussed on (i) identifying definitions and KPIs for build-

ing energy flexibility assessment, and (ii) the task of utilising data-driven methods for calculating these KPIs. These 

KPIs should take into account the heterogeneity of data representations in datasets relating to B2G services. This 

Annex 81 research promoted the use of ontologies and semantic principles to standardie the definitions and com-

putation of KPIs. 
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4.3.1 Measuring Demand Flexibility Outcomes 

A literature review was conducted on ways to quantify the demand flexibility available from both single buildings 

and from clusters of buildings. Of the studies reviewed, 49% focused on residential buildings and 28% focused 

on commercial buildings. 53% of studies considered flexibility at single-building level and 41% considered 

flexibility at building cluster level. Only 26% of the studies involved real measurements of flexibility, with 65% 

relying on numerical simulations (Li et al., 2023). 

The review highlighted two main constraints in quantifying energy flexibility through operational building data 

analysis, being (i) the lack of robust data-driven approaches for generating baseline load profiles when demand 

response is not activated (which are necessary for calculating baseline-dependent KPIs) and (ii) the lack of 

KPIs that can be computed without need of baseline or reference scenario inputs (i.e., baseline-free KPIs). 

A total of 81 distinct data-driven KPIs were identified in the reviewed scientific literature on building demand 

response. Table 4.4 and Table 4.5 show the most popular (most frequently used in scientific studies) data-

driven energy flexibility KPIs. 

Table 4.4: Most popular KPIs that require a baseline for assessing demand response and energy flexibility (Li et al., 
2023, Johra et al., 2023a). 

KPI denomination Definition 

Energy efficiency of 
demand response 
action 

The difference in total energy use between the scenario with demand response 
and the reference scenario without demand response over a complete cycle, 
divided by that over the period of the demand response action 

Flexibility savings 
index 

The ratio between the energy costs of the scenario with demand response and 
the energy costs of the reference scenario without demand response 

Peak power shedding 
The difference between the peak power use of reference scenario without demand 
response and the peak power use of the scenario with demand response 

Table 4.5: Most popular baseline-free KPIs for assessing demand response and energy flexibility (Li et al., 2023, Johra et 
al., 2023a). 

KPI denomination Definition 

Flexibility factor 
The difference between the energy use during non-peak periods and peak periods 
divided by the sum of energy use during non-peak periods and peak periods 

Energy shift flexibility 
factor 

The difference between the energy use during low-price periods and high-price 
periods divided by the sum of energy use during low-price periods and high-price 
periods 

Load factor The ratio between the average power use and the maximum power use 

 

As discussed in Section 3.1, 81% of the data-driven energy flexibility KPIs found in the scientific literature 

require a baseline to be computed. Establishing such a baseline energy profile (a counterfactual energy de-

mand if no demand response event had occured) is challenging. Ideally, the baseline calculation method would 

be robust, transparent and impervious to possible gaming of B2G service markets.  Currently, there is no 

consensus about which data-driven energy demand baseline generation method would perform best, espe-

cially at low aggregation levels (Li et al., 2023, Johra et al., 2023a).  

The most common data-driven methods for baseline generation in single-buildings and in district energy ap-

plications are as follows: 

● Control group methods: Construct a baseline from monitoring data of buildings that are similar to 

the target ones with equivalent boundary conditions (weather, occupancy, operation) but do not per-

form any demand response at the time of evaluation (Li et al., 2023). 
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● Averaging methods (similar day look-up approach or XofY): One of the most popular XofY load esti-

mation technique is the HighXofY, which takes the average load of the X highest demand days from 

a set of Y admissible days prior to the demand response event (Li et al., 2023). 

● Regression models: Load forecasting is often performed with robust autoregressive models, such as 

ARMA (Auto Regressive Moving Average), ARIMA (Auto-Regressive Integrated Moving Average), 

GAM (Generalized Additive Model), or LASSO (Least Absolute Shrinkage and Selection Operator). 

However, these models may require large amounts of historical data to get a good fit (Li et al., 2023). 

● Shallow machine learning methods: Currently, many popular machine learning methods employ 

relatively simple models with a small number of layers or processing stages (shallow artificial neural 

networks, decision trees, random forests). These models present a limited capacity to learn complex 

and non-linear patterns from multi data with high dimensionality. They are thus only adequate for data 

with relatively simple patterns and straightforward relationships between features and outputs. 

● Deep machine learning methods: In recent years, deep machine learning methods have emerged 

to leverage deep neural networks (DNN) with a very large number of hidden layers and neurons, re-

current architecture and attention mechanisms. These DNNs are very well suited to learn intricate 

patterns and representations from time series data (typical dynamic data from building systems) and 

generate forecasts of building energy profile and indoor environment variations (sequence-to-se-

quence forecasting) (Chaudhary et al., 2023a; Chaudhary et al., 2023b). In particular, long short-term 

memory and time-delay neural networks, have gained popularity for building energy profile forecasting. 

However, DNNs require a large amount of training data to outperform more simple and robust statis-

tical methods. Large building operation datasets with sufficient quality for DNN training are scarce, but 

this limitation can be mitigated by employing transfer learning principles and synthetic data generators 

(Chaudhary, 2023c). 

● Hybrid models: Combining some of the abovementioned modeling approaches has also been ex-

plored as a means of performing load demand forecasting. 

4.3.2 Datasets and Test Cases 

Annex81 research sought to gather datasets (in the form of time-series meter and sensor data, along with 

appropriate metadata and case descriptions) of demand response activities, in the hope that they could be 

used to further develop, study, test and benchmark B2G services.  

330 datasets were identified as potentially of interest.  Of these, only 16 were deemed adequate with proper 

descriptions and open access (or soon to be open access) data (see Figure 4.9). A large share of the dataset 

candidates were miscategorized, out of scope, without sufficient description or unavailable to participants out-

side of the original research group that had generated the data (Li et al., 2023). 

Datasets are available through an online platform (web-app) for the collection and analysis of building demand 

response datasets. It can be accessed at the following link: https://aau-ef-kpi-web-app.build.aau.dk/ (see also 

Johra et al. (2023))  

4.3.3 Toolbox for Data-Driven Assessment of Energy Flexibility  

Annex 81 participants developed an open-source Python toolbox, to help different building stakeholders (build-

ing owners, tenants, building managers, policymakers, utility companies, and grid operators) to assess de-

mand response and energy flexibility from buildings. This Python package leverages the EFOnt ontology (Li 

and Hong, 2022) to apply semantic principles for the standardization of KPI definitions and computation. A 

semantic/ontology-based approach appears to be the best way to streamline demand response assessment 

from commonly available operational building data. It ensures the interoperability of the toolbox with the differ-

ent elements in the B2G ecosystem, and supports the portability of the B2G services across heterogeneous 

buildings.  

https://aau-ef-kpi-web-app.build.aau.dk/
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Figure 4.9: Building demand response dataset collection campaign by Annex 81 (Li et al., 2023). 

Combined with other relevant ontologies, representing various useful knowledge domains for B2G services, 

the EFOnt ontology enables the creation of semantic data models that can facilitate standardisation of the 

demand response KPIs’ definition, their data specification/requirements, data collection procedure, pre-pro-

cessing, computation procedure and visualisations (see Figure 4.10). The demand response and building 

energy flexibility KPIs found in the scientific literature are progressively implemented in the energy-flexibility-

kpis Python package, together with all necessary data treatment sub-functions and key data-driven methods 

for generating an energy profile baseline (Johra et al., 2023a, Li and Hong, 2022). 

This energy-flexibility-kpis Python package for the assessment of demand response and energy flexibility 

strategies can be found in the dedicated GitHub repository https://github.com/HichamJohra/energy_flexibil-

ity_kpis (under development) and can be installed from pypi.org (https://pypi.org/project/energy-flexibility-

kpis/): pip install energy-flexibility-kpis. 

 

 

Figure 4.10: Semantic description of an energy flexibility KPI and its input variables in the EFOnt ontology (Johra et al., 
2023a, Li and Hong, 2022).  

  

https://github.com/HichamJohra/energy_flexibility_kpis
https://github.com/HichamJohra/energy_flexibility_kpis
https://pypi.org/project/energy-flexibility-kpis/)
https://pypi.org/project/energy-flexibility-kpis/)
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5. Case Studies 

A focus of Annex 81 research was to collect case studies of data-driven smart buildings.  Based on surveyed 

stakeholder preferences, the aim of this work was to (1) gather evidence from real-world implementations, 

(2) capture stakeholder perspectives and context, (3) identify and summarise business models, (4) highlight 

relevant applications and use-cases, and (5) document specific technologies and technology stacks. 

Collectively, these case studies establish an accessible evidence base that outlines common challenges and 

critical insights, thereby facilitating the wider adoption of data-driven smart buildings. Emphasis was placed 

on clearly communicating the benefits, lessons learnt, and challenges encountered, and ensuring the content 

was accessible both in terms of availability and level of detail to a broad audience.  

The resulting collection of case studies is accessible at https://datasmartbuildings.org/ and an open-access 

book is in preparation. 

5.1 Methodology for case study collection 

A standardised two-page template was developed to enable case study information to be gathered consist-

ently. An initial draft template was systematically refined through several co-creation workshops involving 

diverse stakeholder groups, ensuring the captured data was relevant to various fields. The final template 

specifically aimed to collect (a) general details such as the case study’s location, installed technology, data 

availability, and implementation status (Figure 5.1: top); (b) technical specifics and business models, includ-

ing project objectives, implementation processes, value propositions, and impacts (Figure 5.1: middle); and 

(c) stakeholder narratives and knowledge generation, covering lessons learnt and key actors involved (Figure 

5.1 bottom). Each case study typically focused on a specific non-residential smart building, technology, or 

dataset. 

Participants of Annex 81 and their extended networks, who had direct experience with decision-making or 

implementation of smart-building technologies, were invited to voluntarily contribute by completing the tem-

plate. The coordinating team reviewed submitted case studies for completeness, consistency across different 

case studies, and clarity for non-technical audiences. When necessary, iterative exchanges with contributors 

occurred via email to refine content before final publication in the online repository. The web repository facil-

itates the dissemination of generated knowledge, providing associated visual resources (e.g., images, 

graphs, workflows) and supplementary materials such as building plans, models, dataset links, publications, 

and detailed project information where available. 

5.2 Collected case studies 

Eighteen case studies were collected and made available through the online repository, representing a di-

verse range of building types, applications, and locations across thirteen countries (Table 5.1). These case 

studies cover multiple technologies, such as model-predictive control (MPC), demand response (DR), open 

data platforms (OD), fault detection and diagnostics (FDD), and benchmarking (BM). 

 

https://datasmartbuildings.org/
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Figure 5.1: Case study template. 
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Table 5.1: Summary of the collected case studies. 

Case study Location Building type Technical details 

ZUB Building Germany Office MPC, FDD 

     “         59” U.S.A. Office MPC 

OMV Head Office Building Austria Office MPC 

EV Building, Concordia University Canada Education OD 

Infineon R&D Building Austria Education, Office MPC, FDD 

CSIRO Synergy Building Australia Education, Office MPC, OD 

Holiday houses with swimming pools Denmark Recreational Residential 

Building 

MPC, DR 

Cooling Plant in a Factory Japan Industrial FDD 

The Post am Rochus Building Austria Office, Retail MPC 

Campus Inffeldgasse Austria Education, Office FDD, DR 

         “         28” Netherlands Education FDD, OD 

PoliTo Campus (Photovoltaic Plant) Italy Education FDD 

Varennes Net-Zero Energy Library (Build-

ing & Controls) 

Canada Library MPC, DR 

Varennes Net-Zero Energy Library (Energy 

Platform) 

Canada Library DR, OD 

     “             Analytics Cam-

     ” 

U.S.A. Community, Education, 

Hospitality, Office, Retail, 

Offices, Health 

FDD, BM 

Semantic Application in Building Automa-

tion: Government Offices in Hong Kong 

Hong Kong 

SAR 

Miscellaneous (incl. Of-

fices) 

BM 

HiLo Living Laboratory Switzerland Office MPC, FDD, BM, 

DR, OD 

New Museum of London Smart Building 

prototype 

United 

Kingdom 

Museum FDD 

 

Analysis of the collected case studies identified shared themes and unique characteristics of the implemented 

technologies, helping synthesise the main drivers and barriers to adopting data-driven smart buildings. The 

primary driver across these projects was consistent: reducing energy demand while maintaining or improving 

occupant comfort in both new and retrofitted buildings.  

Many case studies introduced novel, data-driven prediction models at a whole building or individual compo-

nent level to enhance building operation, improve prediction accuracy, and reduce commissioning efforts. 

For instance, in the CSIRO Synergy Building case study, a machine-learning-enabled optimisation engine was 

integrated to adjust setpoints automatically for chiller plant control. Operational data stored in CSIRO’s data 

management platform were used to train machine learning models to forecast potential scenarios and opti-

mise setpoints. The key advantages of this optimisation engine compared to traditional cooling controls in-

clude: a) transparent presentation of current performance metrics, recommended control strategies, and 

forecasted savings; b) straightforward implementation through cloud-based technology, utilising existing 

building management system (BMS) data; c) scalable, customised weather compensation control strategies 

informed by specific site knowledge; and d) cost-effectiveness, achieving a payback period of less than 12 

months. 

In the EV Building case study, the collected operational data was leveraged to create data-driven models that 

improved facility management decision-making. Machine learning clustering methods derived hourly occu-

pancy patterns, generating realistic stochastic occupancy profiles. These profiles enhance simulations in 

software like EnergyPlus and enable better control strategies. This approach also improves accuracy in pre-

dicting electrical peak demands, allowing facility managers to implement effective peak-shifting strategies 

and reduce energy costs. 
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5.3 Thematic analysis of case studies and lessons learnt  

Across all case studies, lessons learned revolved around four core themes: i) data quality and management, 

ii) technology specification and implementation, iii) stakeholder engagement, and iv) governance, compli-

ance, and legal oversight (Table 5.2). These lessons learnt are discussed below. 

Table 5.2: Thematic analysis of the reported lessons learnt for the eighteen case studies. 

 

i. Data quality and information management: Specification of data requirements–such as the number of 

data streams to collect and the desired resolution, or relevant metadata to be collected–must be consid-

ered from the earliest design phase. This should be linked to the purpose this data will be used for (Cool-

ing Plant in a Factory case study). Likewise, planning a thorough data collection strategy was deemed 

crucial to support dependable predictive modelling and to enable simulation with lower uncertainty. 

Achieving this requires (a) ensuring a varied and accurate range of data streams, such as detailed occu-

pancy data and sub-metering (EV Building, PoliTo Campus, and Campus Inffeldgasse case studies); and (b) 

selecting widely adopted sensing and communication technologies that deliver consistent performance 

and long-term reliability (Campus Inffeldgasse, PoliTo Campus, and Holiday Houses with Swimming Pool case 

studies). 

Accurate, reliable, and information-rich data was fundamental for smooth real-time simulations and data-

driven predictive modelling (OMV Head Office Building, Infineon R&D Building, PoliTo Campus, Factory Cool-

ing Plant, and CSIRO Synergy Building case studies). The belief that sensors will deliver correct values is 

often misplaced. This can be due to miswiring of sensors, sensor drift, lack of calibration, or even poor 
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labelling. Using robust sensing technology, redundant acquisition strategies and modern infrastructure, 

with local data storage, helped mitigate the risks of data gaps caused by communication failures or con-

nectivity loss. Ensuring data quality and completeness is key to supporting data-driven decision-making. 

This can be done manually or integrated directly within time-series databases (e.g., consistency checks, 

threshold-based cleaning, and data imputation if needed). For example, the PoliTo Campus case study, 

substantially reduced the percentage of missing data. 

Integration and upkeep of non-interoperable data streams and metadata formats from different proprie-

tary vendors or systems (e.g. lighting, access controls, or BMS) can be both time-intensive and costly, 

impeding smooth model development and real-time operation (Government Offices in Hong Kong case 

study). A significant effort was needed in the LBNL Building 59 case study to maintain consistent, high-

quality data coming from many different platforms. Likewise, the Varennes Library case study encountered 

delays as it grappled with non-standard communication protocols and difficulties in integrating smart de-

vices for its transactive energy system. Missing standard sensor information and lack of open data com-

plicated the ZUB Building case study’s approach, creating unexpected costs. 

Clear data governance – especially through meaningful naming conventions (or renaming when refur-

bishing buildings) and utilising standardised metadata schemas – was identified as a cornerstone of 

sound data collection and storage (New Museum of London case study). Manually cataloguing metadata is 

time-consuming, often requiring multiple sources of knowledge (CSIRO Synergy Building case study). There-

fore, an increasing focus on digitalisation is advocated for operational/telemetry data storage (e.g., auto-

matically including location and relevant tags such as equipment hierarchy, make/model and serial num-

bers). Development of semantic data platforms that support semantic models (e.g. based on the Brick 

schema) and time-series databases can be used to effectively tackle this challenge by creating a digital 

representation of the system with standardised relationships to classify and interconnect its different 

components (Government Offices in Hong Kong case study). 

ii. Technology specification and implementation: Many existing approaches can make specific, often 

limiting, assumptions about how each building operates (e.g., space utilisation, schedules, etc.). If the 

operating point changes, using past data might yield unexpected results. For example, during the pan-

demic the modus-operandi of buildings changed, requiring higher ventilation rates, leading to higher en-

ergy consumption (LBNL Building 59 and CSIRO Synergy Building case studies). These shifts made it harder 

to determine normal baselines or optimise future building performance using past data. The ability to 

operate when data is unavailable or conditions change, and respond to any unanticipated event, can lead 

to more resilient buildings. 

Virtual building models can automatically detect common issues during building-services installation and 

commissioning, such as hydraulic or control-logic errors (OMV Head Office and Infineon R&D Building case 

studies). Inaccurate operating assumptions made at early stages, substitution of materials or components 

during construction, or operational changes can create significant deviations between design and oper-

ational performance. The fragmented nature of such changes can create unintended consequences. 

Information artefacts (e.g. knowledge graphs) or simulation models for what-if scenarios, require contin-

uous updates to remain relevant (Post am Rochus Building case study).  This requires both ongoing oversight 

and integration of the maintenance of these artefacts into day-to-day operations. Building on lessons 

from the Post am Rochus Building case study, some recommended steps for commissioning and trial phases 

include (i) defining coherent, system-wide control strategies and operational modes, (ii) developing clear 

documentation for commissioning of major components, and (iii) performing functional quality manage-

ment at the component level.  This enables each element’s performance to be checked against design 

criteria, deviations rectified, and all systems verified to work together. Such efforts should persist during 

trial operations to sustain efficient performance, bolstered by close collaboration with control engineers 

when testing main operational modes and procedures. 

The time needed to (i) configure and tune complex models reliably, (ii) spot and fix bugs, (iii) perform 

plausibility checks, and (iv) arrange suitable data visualisation, can become problematic when decisions 
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are time-sensitive and additional delays often result in extra costs. Likewise, the implementation effort 

for simulation models, like the ones used for automated FDD, can be expensive and may not yield enough 

direct payback on their own (Factory Cooling Plant case study). Thus, the ability to develop and deliver 

portable and reusable applications (Mavrokapnidis et al., 2023) is important, in order to reduce effort in 

bespoke development of such applications and improve re-use, reducing the cost and implementation 

time compared to more traditional approaches where customised models have to be extensively rede-

veloped and adapted. The use of AI and machine learning methodologies, leveraging knowledge ac-

quired from previous tasks, successfully enabled model transferability as demonstrated in both the HiLo 

and the Government Offices in Hong Kong case studies. 

Computational requirements and complexity of the system can also pose challenges to smooth and sta-

ble operation of the technology deployed. For example, issues were faced in the Cooling Plant in a Factory 

case study due to data loss between field devices and the cloud storage, power outages for inspections, 

or unexpected operating system updates. Similarly, issues were faced in the initial stages of the New 

Museum of London case study, such as getting the building management system on IP controllers and re-

starting network machines after updates. Lastly, the energy requirements for running ICT equipment and 

infrastructure should be properly considered in techno-economic feasibility analyses before implementing 

such systems. 

iii. Effective stakeholder engagement is required for successful implementation of smart technologies. It 

is essential to clearly communicate the technology’s benefits and capabilities to all stakeholders early in 

the project, building trust, encouraging cooperation, and managing expectations. Equally important is 

carefully addressing user needs to ensure their acceptance and satisfaction. As highlighted in the Factory 

Cooling Plant and Campus Inffeldgasse case studies, stakeholder training and knowledge transfer were par-

ticularly beneficial. These measures help on-site operators better interpret system results and encourage 

occupants to interact with the system as intended (for example, preferring mechanical ventilation over 

opening windows). 

Experience from the ZUB Building case study further illustrates that occupants tend to resist fully automated 

systems when direct control or overrides are unavailable. Perceived lack of control often causes dissat-

isfaction (Parkinson, 2023). Additionally, occupants were more receptive to automated setpoint adjust-

ments when changes occurred unnoticed, such as leveraging thermal mass, rather than through notice-

able or disruptive actions like motor-driven adjustments. 

iv. Governance, compliance, and legal oversight requires attention when implementing data-driven smart 

technologies. For instance, the Post am Rochus case study identified a need for clear regulations specifying 

how to handle updates to design simulations and assumptions during construction, such as recalibrating 

models to match actual as-built conditions and validating them using monitored data. Additionally, legal 

challenges emerged regarding operator contracts that typically include energy-saving targets. These tar-

gets are often based on relative savings compared to a baseline period within the first three to five years 

of operation, which may not accurately reflect long-term performance improvements. Lastly, collecting 

occupancy data through counting occupants raised unresolved privacy concerns related to GDPR com-

pliance in Canada's EV Building case study. 

 

In summary, valuable insights and lessons have been collected across various panel discussions and from 

the recorded case studies. A common reported barrier was the lack of openly accessible data from real-world 

implementations and limited standardisation in areas such as metadata cataloguing, data labelling, and in-

teroperability. This absence of standards frequently results in ad hoc or proprietary solutions, limiting the 

exchange and reuse of potentially valuable information.  

The eighteen analysed case studies consistently emphasised the importance of data quality and systematic 

data collection, as these directly influence the effectiveness of data-driven algorithms, the accuracy of infor-

mation extraction, predictive reliability, and overall costs. 
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Other challenges included the lack of (i) clear narratives, (ii) detailed examples of real-world technical imple-

mentations, and (iii) unclear articulation of the value propositions.  These collectively hinder wider adoption.  

Stakeholders also highlighted that conservative industry structures, fragmented skill sets, and a tendency 

toward siloed thinking significantly limit the dissemination of best practices and knowledge-sharing. To ad-

dress these issues, occupant training and engagement were recognised as essential for familiarising users 

with optimal operation practices and demonstrating the benefits of smart-building technologies.  

The case studies created within Annex 81 can help substantiate the benefits (e.g., reduced costs, enhanced 

comfort, improved fault management) and stimulate further research and innovation activities. 

It was also recognised that concerns about loss of user control, cybersecurity, privacy, and legal implications 

associated with new data-driven technologies—such as handling revisions to operational agreements—must 

be clearly addressed or refined. Resolving these issues is crucial to increasing stakeholder confidence and 

accelerating the widespread adoption of smart-building solutions. 
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6. Supporting Further Adoption of Data-

Driven Smart Buildings 

Data-driven smart buildings is an emerging technology class with great potential to drive energy productivity 

in buildings.  Estimates of the benefits of digitally enabled efficiency and demand flexibility, in different re-

gions, include:  

• Across Europe over a 20-year period: building automation technology could be ramped up progres-

sively to achieve energy savings of 13%, compared with the reference scenario, with estimated cumu-

lative 3.4 GT of CO2 emissions savings (Waide et al, 2013). 

• Across the USA over the period 2021 to 2040: The US Department of Energy (2021) estimates that 

‘Grid-Interactive Efficient Buildings’ (GEBs) have the potential to reduce total U.S. electricity supply 

costs by 2 to 6% (saving the US power system $100-200 billion) and help to reduce CO2 emissions by 

around 6% (saving around 80 MT/year of CO2 emissions).  

• Across the Australian National Electricity Market to 2040: demand flexibility could provide $18b in cost 

savings (ARENA, 2022). 

Noting the significant scale of these benefits, the rationale for policy action to support further adoption of 

data-driven smart buildings is both:  

In the short term, support digitalisation in buildings because it’s an underutilized energy efficiency technology 

class, that can be part of a no-regrets (positive benefit to cost ratio) policy approach for reducing greenhouse 

gas emissions. 

In the medium term, support digitalisation because it will become a critical tool for enabling the clean energy 

transition.  Vast amounts of new variable renewable electricity resources will need to be backed up with 

controllable (dispatchable) resources to maintain electricity system reliability, and to avoid discarding other-

wise unusable renewable energy production.  Dispatchability and electricity system coordination will require 

digitalisation. 

Navigating the clean energy transition will require zero‐carbon‐ready buildings 

to be ‘digital ready’. 

It is no surprise then, that the IEA identified ‘Leveraging digital innovation to enhance system-wide efficiency’ 

as one of its ten strategic principles for achieving the COP28 goals (IEA, 2022).  

Policy actions to realise the potential of digital technologies can focus on both stimulating innovation and 

reducing barriers to adoption.  

In support of these policy actions, Annex 81 focused its research on (i) stimulating innovation by running 

data-driven artificial intelligence (AI) competitions and (ii) consulting with industry to identify barriers and 

develop policy solutions to overcome them.  The results of this research are discussed in the following sub-

sections. 

6.1 AI Competitions 

Crowd-sourced data science competitions are a powerful tool for advancing research in energy informatics, 

and for developing innovative machine learning solutions. Over the past decade, competition platforms (e.g., 

Kaggle, AI Crowd and others) have become popular, as a way of tackling complex data problems, by har-

nessing the collective intelligence of global participants. Such competitions are a cost-effective alternative to 

traditional in-house R&D, often yielding creative solutions from diverse teams around the world. They also 

provide valuable learning opportunities for participants to sharpen their skills and to contribute to solving real-

world challenges.  
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These competitions typically involve release of ground-truth data to competitors, to enable them to train their 

machine learning algorithms.  Subsequently, new data is released (without ground truth) to see how well the 

algorithms perform.  The best performing algorithm wins (based on CVRMSE or other statistical accuracy 

KPI). 

In the energy sector, data competitions have been used to address problems ranging from energy efficiency 

optimization to renewable integration and grid stability. Competitions can include both quantitative and qual-

itative elements, assessing solution merit using criteria relating anywhere from mathematical excellence to 

business model potential. 

Relevant recent competition topics include  

• Building load forecasting: (1) ASHRAE Great Energy Predictor III (Miller et al, 2020), (2) BigDEAL 

Forecasting peak timing of electricity demand (Shukla and Hong, 2024) and (3) Global AI Challenge 

(Hong Kong EMSD, https://2021.globalaichallenge.com/en/home)  

• Grid-interactive optimization of neighbourhood energy consumption: (1) CityLearn 2022 

(Nweye et al, 2022), 

• Data-driven application innovation: (1) NYSERDA RTEM Global Energy & Building Hackathon 

2022, (https://be-exchange.org/nyserda-rtem-hackathon-demo-day/) 

• Classification of sensor metadata: (1) Brick by Brick 2024 (https://d3qvx1ggyg4lu1.cloud-

front.net/challenges/brick-by-brick-2024) 

By way of example, the ASHRAE Great Energy Predictor III challenge (Miller et al, 2020) required competi-

tors to find the most accurate modelling solutions for predicting future building energy consumption, based 

on historic weather and consumption data. Competitors were provided with over 20 million points of training 

data from 2,380 energy meters collected from 1,448 buildings.  The data was obtained from 16 sources. The 

competition had 4,370 participants, split across 3,614 teams from 94 countries who submitted 39,403 pre-

dictions. Competitors publicly shared 415 reproducible online machine learning workflow examples (note-

books), including over 40 additional full solutions. This provides an unprecedented evidence base to draw 

general conclusions from (relating to what works best for this challenge task).  In this competition, the most 

popular and accurate machine learning workflows used large ensembles of mostly gradient boosting tree 

models, such as LightGBM. Preprocessing of the data sets emerged as a key differentiator of the best per-

forming solutions. 

Key elements of hosting a competition include dataset collection and curation, participant engagement, and 

competition design (both from an implementation perspective and from an industry relevance/ real-world-

impact perspective). 

 

Annex 81 ADRENALIN Competitions 

With funding support from ERA-Net Smart Energy Systems, the ADRENALIN (dAta-DRivEN smArt buiLd-

INgs) project was a consortium of 12 project partners (linked to Annex 81), that organised two AI competi-

tions. The project aimed to (i) create a data sandbox, (ii) run AI competitions using the data sandbox, and 

(iii) support transfer of AI software algorithms to industry for implementation. The project included 6 academic 

partners and 6 industry partners across 7 countries. The two competitions were 

1. The ADRENALIN Load Disaggregation Challenge: This challenge required competitors to develop 

machine learning or statistical models that could take a building’s site-level energy consumption me-

ter data and disaggregate it, to quantify the energy consumption of the building’s HVAC-related loads 

(i.e its constituent temperature-dependent energy consumption). If successful, this application could 

avoid the need for expensive submetering of HVAC equipment.  It could also help evaluate the ben-

efits of various energy efficiency solutions (e.g. addressing sub-optimal insulation or aging HVAC 

equipment). 

https://2021.globalaichallenge.com/en/home
https://be-exchange.org/nyserda-rtem-hackathon-demo-day/
https://d3qvx1ggyg4lu1.cloudfront.net/challenges/brick-by-brick-2024
https://d3qvx1ggyg4lu1.cloudfront.net/challenges/brick-by-brick-2024
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The dataset assembled for the challenge comprised data from multiple buildings in different coun-

tries, contributed by the various project partners. These buildings included commercial and public 

facilities (e.g., office buildings, kindergartens), which ensured that no personally identifiable con-

sumer data was involved. For each building, the dataset included the main meter measurements 

(overall electricity or heating consumption) as well as sub-metered readings for the key temperature-

dependent loads (such as heating/cooling systems), which served as the ground truth for disaggre-

gation. In addition to energy meter readings, the dataset provided contextual features: basic building 

attributes (e.g., floor area, building type) and local weather data (e.g., outdoor temperature) synchro-

nized with the consumption data. 

The challenge attracted 47 participants and resulted in 13 valid submissions. 9 submissions suc-

cessfully exceeded the minimum performance threshold set by the organisers. 

2. BOPTEST Smart Building HVAC Control Challenge: This challenge required competitors to develop 

control algorithms that can activate the flexibility potential of a building’s HVAC system - based on 

variable cost signals, while not compromising indoor air quality. The winning entry would have the 

lowest weighted score (compared with the price ignorant baseline controller).  The weighted score 

included components relating to (i) annual energy cost, (ii) peak energy demand and (iii) indoor en-

vironment (including both CO2 concentration levels in the occupied space and Kelvin-hours of ther-

mal discomfort).  

The competition was implemented using the BOPTEST framework, as a means of benchmarking 

each competitor’s results on a like for like basis, using virtual building emulators, and using the 

BOPTEST “highly dynamic” energy price scenario.  

In addition to submitting controller performance data, the final submission required participants to 

submit a description of their control approach. As a result, there was both quantitative and qualitative 

components to the final assessment. 

The challenge attracted 22 participants and resulted in 5 valid submissions. 4 submissions success-

fully exceeded the minimum performance threshold set by the organisers. 

Each winning team received a prize of 10,000 euros, distributed in two instalments: the first 5,000 euros 

awarded immediately upon announcement of the winners and the second 5,000 euros paid after a three-

month knowledge transfer period with the sponsoring companies. 

There were a number of learnings from organising these competitions. These are discussed by Tolnai et al., 

2025. Some of these learnings include: 

Data quality and preparation is challenging: As the dataset was compiled from multiple real buildings via 

different project partners, harmonizing it required extensive preprocessing. Issues such as inconsistent for-

mats, missing values, and varying sensor accuracies surfaced throughout the data curation process. 

Generalisability needs careful consideration for industry implementation: Designing the competition to return 

a single aggregated score, that combines results across all buildings, helped to prevent participants from 

overfitting to individual buildings. This can help ensure that models are capable of performing well across 

diverse conditions. Similarly, selection of KPI metrics is critical to avoid inadvertently creating prediction bi-

ases. The computational cost of complex models would ideally be incorporated into the assessment KPIs, 

particularly where near real-time applications are being considered. 

One of the most valuable outcomes of competitions is the dissemination of knowledge. Competitions should 

generally require open-source solutions (with appropriate licensing) and should host post-competition work-

shops where winners can explain their methods.  

Relatedly, solution transfer to industry should form part of competition design. ADRENALIN encouraged this 

by requiring a post-competition collaboration period for winning teams, ensuring that top solutions were 

properly documented and tested for industry use. Competitions could also consider offering follow-up grants 

or research funding for the top solutions, encouraging continued development and real-world piloting. 
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6.2 Barriers to Data-Driven Smart Buildings 

Annex 81 participants conducted significant research attempting to understand the barriers that might be 

impeding industry uptake of data-driven smart building technology.  

Initial Scan 

An online discussion between Annex 81 participants, and invited industry participants, provided an initial 

qualitative scan of current industry practices, stakeholder needs, and implementation challenges. Several 

critical issues emerged (Figure 6.1), including: (i) unclear value propositions, poorly aligned with stakeholder 

needs and existing processes; (ii) ill-defined implementation pathways, including uncertain business case 

and incentives; (iii) limited real-world evidence of successful smart technology implementations; (iv) insuffi-

cient standardisation; (v) inadequate availability of high-quality data and metadata necessary for credible 

data-driven applications; and (vi) actual and perceived legal and ethical concerns. 

 

Figure 6.1: Annex 81 Stakeholders’ perspectives on barriers to smart buildings implementation.  

To address these barriers effectively, participants were asked how Annex 81 activities could contribute to 

overcoming innovation and technology uptake challenges. Participants emphasised several actions critical 

for accelerating adoption. They strongly advocated for (i) knowledge-sharing platforms, particularly to pro-

mote best-practices using practical examples and detailed case studies to clearly demonstrate successful 

implementation pathways, (ii) promotion of standards, and (iii) access to data. Participants emphasised the 

need for reliable, high-quality data and metadata, streamlined implementation methodologies (such as data 

labelling and control sequences), and enhanced interoperability.  

A more detailed survey was conducted on barriers relating to data.  The results of this survey are illustrated 

in Figure 3.7 and discussed in Section 3.2.1 of this report.  

FDD Barriers Mapping 

Further survey research and literature reviews were undertaken, focusing specifically on the industry barriers 

relating to the Fault Detection and Diagnosis (FDD) application (Chen et al., 2023, Andersen et al., 2024, 

Melgaard et al., 2022). 

Barriers were mapped across (i) the various stages of the FDD life-cycle (Figure 6.2), and (ii) the relevant 

stakeholder to which the barrier applies.  The barriers were divided into five barrier categories: 
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● Economic and business: Costs and benefits for end-users and/or business limitations. 

● Technological and technical: Technical knowledge, interoperability, infrastructure and/or data. 

● User-related: User experience, interface and/or misunderstanding. 

● Regulatory: Policies, GDPR and/or cybersecurity. 

● Social and societal: Cultural, community and stakeholders, benefits for society and/or environmental 

sustainability. 

 

Figure 6.2: Mapping of the AFDD ecosystem for implementation and operation of AFDD solutions. 

Key barriers relating to the identified stakeholders are: 

● Building Technology industry (AFDD companies + BMS vendors). The key issues affecting this 

category typically relate to implementation in buildings, and mostly relate to interoperability and to 

market related issues and adoption. Legacy BMS systems and proprietary communication protocols, 

in existing buildings, challenge the implementation of new FDD products.  This makes integration not 

only technically difficult but requires a significant investment that may not match the customer’s ex-

pectations. 

● Building owners. Such stakeholders might be required to make large investments to upgrade or 

retrofit their existing equipment. Implementing advanced FDD tools may expose the building systems 

and data to cybersecurity issues. Without a broadly accepted methodology to assess the potential 

performance of FDD tools in operation, calculation of investment KPIs (like return on investment or 

payback time) may be problematic, and it could be difficult to estimate potential savings. 

● End users (maintenance staff). Lack of interpretability or transparency behind the results of FDD 

tools may lead to difficulty in accepting results (fault root causes, diagnosis, actions to be taken) from 

the end user perspective. Users are often interested in fully understanding how the tool calculates a 

certain result or prioritizes the intervention on a certain fault. Along with trust issues and the learning 

curve required to understand and use such tools, the end users may be reluctant to change day-to-

day operations in favour of new procedures. 
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A detailed breakdown of the barriers, relating to FDD, is provided in the Annex 81 Subtask C report (Wen 

et al., 2025). 

Further Literature on Barriers  

Annex 81 research identified further, more general, literature on barriers to the adoption of digitalisation in 

buildings, such as that by the IEA (2021), the Digitalisation Working Group of the Energy Efficiency Hub (Otte 

et al., 2022) and the US Department of Energy (2021). These studies highlight similar barriers of (i) Interop-

erability, (ii) Data access, (iii) Privacy and (iv) Cyber Security. 

Trianni et al. (2022) conducted focus group research to further understand the barriers experienced by 

industry practitioners.  Barriers were ranked in importance for each of four categories.  The rankings are 

illustrated in Figure 6.3.  

 

Figure 6.3: Ranking the importance of barriers to utilising digitalisation for improving energy performance (Source: 
Trianni et al., 2022). 

These rankings demonstrate a tendency for industry to reframe the barriers in terms of the attractiveness of 

the investment or ‘the business-case’. They found that most of the challenges with the business case could 

be grouped under two core (but connected) themes: 

• Uncertain Return on Investment: Despite the proven short payback-time, industry perceives the cost 

of retrofitting IT infrastructure and digital connectivity to be high, and the returns uncertain. This re-

flects the highly variable cost of implementing the technology, which can depend on existing controls 

hardware capability (e.g. legacy systems, interoperability issues, etc) and the commercial context of 

the investment (e.g. supplier work-scope and liability allocation, bundling with other upgrades, etc), 

amongst other things.  The benefits can also vary significantly, depending on how well the building 

is currently performing (i.e. a poorly performing building has more scope for improvement). Upfront 

investment is needed to quantify both the costs and the benefits, without any a-priori guarantee that 

the business case will ‘stack-up’.  This uncertainty leads to a reluctance to even start the process of 

exploring the viability of digital energy productivity opportunities. 
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• Complexity and Trust: Industry perceives digitalisation as a complex product to purchase and imple-

ment.  Various software and hardware ‘layers’ make up the ‘product stack’.  Furthermore, implement-

ing the technology can often require changes in work-force practices (to take advantage of the in-

sights obtained from the technology).  Industry expressed a desire for more guidance on product 

requirements, and for common terminology that can help to simplify purchasing, avoid potential pit-

falls, and enhance competition. 

6.3 Potential Solutions to Identified barriers 

Various roadmaps have proposed solutions for addressing barriers to digitalisation and digital energy produc-

tivity solutions.  These roadmaps aim both to unlock energy savings and to enable buildings to participate, 

as flexible distributed energy resources, in the clean energy transition.  Relevant recommendations, from a 

sample of these roadmaps, are summarised in Table 6.1.   

These roadmaps converge on the need for government to play a coordinating role, to support adoption of 

digitalisation in buildings. They particularly identify the need to focus on activating digitally-enabled demand 

response resources.  Commonly cited areas for possible policy development include:      

• Provide guidance and certification tools, as a means of simplifying the purchase of digital infra-

structure and to help manage risk.  

• Set ‘digital-ready’ expectations through mandatory data collection and reporting requirements, and 

by including digital infrastructure requirements in construction codes for new buildings,  

• Enable improved access to energy markets,   

• Incentivise both innovators and pilot demonstrations by early adopters, and  

• Provide support for industry capability and capacity building 

Industry Interviews: Potential Policy Solutions to Accelerate Adoption of Data Driven Smart Buildings 

Annex 81 participants interviewed leading industry practitioners to further understand industry pain points 

and aspirations.  Sixteen interviews were conducted, representing industry perspectives across Europe, 

North America, and Asia-Pacific. Interviewed stakeholders included Software-as-a-Service (SaaS) platform 

providers, design consultants, building owners, hardware suppliers and an energy retailer.  Results of these 

interviews, and the resulting policy solutions formulation, are detailed in White et al. (2024). 

The interviews generally identified a strong industry desire to use digitalisation technology as a tool for 

achieving sustainability goals, particularly where it is cost-effective and simple to implement.  These 

motivations were particularly driven by a desire for improved building ratings, to comply with the corporate 

ESG policies of stakeholders (including tenants) and a desire to satisfy compliance responsibilities. 

Consolidating all the relevant information sources, a range of policy solutions were formulated and tested 

with the industry representatives.  The policy solutions were categorised under eight themes and a ‘Policy 

Package’ was developed (Figure 6.4) for driving adoption of digitalisation as a means of optimising energy 

use in buildings 

The solution themes in the ‘Policy Package for Energy Optimisation in Buildings through Digitalisation’ are: 

Theme 1: Provide Information – to reduce complexity and information asymmetry for buyers. 

Theme 2: Establish ‘digital ready’ certification – to standardise solutions and recognise achievement.   

Theme 3: Lead by example – to provide a cohort of early adopters that catalyse the market. 

Theme 4: Support researchers and innovators – to catalyse a wider range of product offerings, 

increase industry maturity, and provide independent validation of the benefits of digitalisation.   

Theme 5: Incentivise EMIS technology – to improve the return on investment from the technology. 

Theme 6: Reduce data sharing risk – to improve certainty and manage possible compliance issues. 

Theme 7: Build workforce skills and capacity – to be able to deliver the services at scale. 

Theme 8: Integrate buildings into the electricity system – to prioritise the clean energy transition. 
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Table 6.1: Summary of existing roadmaps and the solutions they propose 

 
IEA (2021) “Energy 

Efficiency 2021”  

EE Hub (2022) “Roadmap 

on Digitalisation for Energy 
Efficiency in Buildings”  

IE 4E (2022) 
“Interoperability”  

US DoE (2021) “Grid Interactive 

Efficient Buildings Roadmap”  

Green Building Council of 
Australia (2023) “From Net 

Zero to Zero”  

Roadmap 
Focus 

Barrier 

Advocate for policies that 
enable innovative energy 

efficiency solutions and drive 
system-level benefits for the 

clean energy transition 

Address barriers to 
implementing digitalisation 
policies and programs that 
drive energy efficiency in 

buildings 

Understand the impact of 
IoT device level 

interoperability on 
efficiency and demand 

Flexibility. 

Ensure a robust portfolio of flexible 
and cost-effective resources to 

navigate the clean energy transition. 

Develop a set of principles 
and actions that align 

economic and environmental 
outcomes for building 

owners 

Interoperability 
✓ 

Remove interoperability  
barriers 

✓ 
Develop policies that utilise 
interoperability standards. 

Require clear communica-
tions protocols between con-
sumers and external markets 

✓ 
Minimum interoperability 
requirements for flexible 
appliances (thermostats, 
pool pumps, heaters etc) 

Informatory labelling for 
interoperability capability. 

Incentivise interoperable 
devices. 

Develop/adopt standards. 

✓ 
Accelerate adoption of existing open 

standards. 

Require system and device level re-
porting capabilities. 

Explore methods to rate or score 
interoperability of devices and 

buildings 

 

Data Access 

✓ 
Provide (i) supportive 

institutional arrangements 
and (ii) access to data 

platform infrastructure 

✓ 
Equip consumers with 
actionable energy use 

information. 

Provide infrastructure for 
sharing meter data and 

energy system data. 

Incentivise improved data 
availability, quality, and 

analysis 

 

✓ 
Develop standard metrics and 

methods for data collection, data 
analysis, and measurement and 
verification (M&V) of demand 

flexibility. 

Enhance existing building 
performance tools to include 

demand flexibility and GHG emissions 
information. 

Integrate EE data and 
communications standards 

requirements with grid-interactive 
standards  

✓ 
Introduce requirement for 

grid-interactive functionality 
in buildings as part of 

building construction codes. 

Develop a digital strategy for 
the integration of buildings 

as distributed energy 
resource (DER) nodes in the 
electricity system through 

better use of data flows and 
appropriate software. 
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IEA (2021) “Energy 

Efficiency 2021”  

EE Hub (2022) “Roadmap 

on Digitalisation for Energy 
Efficiency in Buildings”  

IE 4E (2022) 
“Interoperability”  

US DoE (2021) “Grid Interactive 

Efficient Buildings Roadmap”  

Green Building Council of 
Australia (2023) “From Net 

Zero to Zero”  

Cybersecurity 
and Privacy 

✓ 
Ensure adequate protection 
from cyber security and data 
privacy risks through frame-

works and guidelines 

✓ 
Create a cybersecurity certi-

fication process. 

Enact data handling regula-
tions that include data pro-
tection, data security, and 

data sovereignty 

 

✓ 
Enable users to provide control per-
missions to trusted third-party appli-
cations and services while ensuring 
cybersecure controls and communi-

cations 

 

Return on 
Investment 

✓ 
Ensure energy markets value 

the services provided by 
digital energy efficiency.  

Utilise digitalisation to 
streamline measurement 
and verification of energy 
efficiency and flexibility 

  

✓ 
Provide incentive mechanisms to 
encourage investment in demand 

side programs. 

Consider customer adoption of EE 
and demand flexibility as part of tariff 

design objectives. 

Package demand flexibility with other 
consumer offerings. 

Identify opportunities for improving 
demand flexibility access to 

wholesale markets. 

Increase consideration of non-wires 
solutions 

Incentivise demand flexibility through 
energy performance contracting 

✓ 
Explore how incentives or 

rating programs can be used 
to incentivise grid-interactive 

solutions in the built 
environment. 

Introduce obligations for 
retailers to engage with and 
support customers on active 

efficiency measures. 

Explore how to improve 
current carbon certificate 

schemes to add time-of-use 
(and ideally real time) carbon 

information. 

Complexity and 
Trust   

✓ 
Increase stakeholder 

awareness and trust in digital 
technology and 
infrastructure 

  

✓ 
Research and socialize data on 

demand flexibility programs and 
operation experiences: including data 

on the hard and soft costs of 
advanced sensing and control 

technologies. 

✓ 
Provide clear 

communication, and 
education to promote 

opportunities for testing and 
delivering grid-interactive 
efficient buildings at scale. 
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IEA (2021) “Energy 

Efficiency 2021”  

EE Hub (2022) “Roadmap 

on Digitalisation for Energy 
Efficiency in Buildings”  

IE 4E (2022) 
“Interoperability”  

US DoE (2021) “Grid Interactive 

Efficient Buildings Roadmap”  

Green Building Council of 
Australia (2023) “From Net 

Zero to Zero”  

Design and market demand flexibility 
programs with a focus on consumer 

preferences. 

Provide technical assistance. 

Government to participate in DR and 
EE programs and markets with their 

own buildings. 

Digital skills 
✓ 

Provide training programmes 
that include digital skills. 

  

✓ 
Establish skills standards and creden-

tials relevant to advanced building 
technologies and operations. 

Broaden relevant workforce develop-
ment programs. 

Establish building training and assess-
ment centers. 

 

 

Technology and 
business model 
innovation 

✓ 
Provide finance for pilots and 

demonstration projects.  

Provide funding for start-ups, 
and remove barriers for new 

market entrants 

 

✓ 
Provide an open platform 
environment to support 

private sector IoT 
technology innovation. 

 

✓ 
Support development and field 

testing of integrated whole-building 
control and grid service delivery. 

Develop and demonstrate integrated 
low-carbon building retrofit 

packages. 

Encourage and publicize innovative 
demand flexibility programs and 

pilots. 

✓ 
Pilot digitalisation 

technologies and establish a 
program to implement 

digitalisation technology and 
demand flexibility in 

government buildings. 

Undertake research to 
understand further 

opportunities for grid-
interactive efficient buildings 
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Figure 6.4: Policy Package for Energy Optimisation in Buildings through Digitalisation (format adopted from IEA Energy Efficiency Policy Toolkit, 2023). 
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Specific policy interventions under each of these themes are identified by White et al. (2024), and examples 

are given of how these policy interventions have been successfully implemented in different jurisdictions.   

Actions under these themes are generally complimentary, supporting common strategic goals (impact 

pathways) to address key industry barriers.  Some of these impact pathways are detailed in Table 6.2 

Table 6.2: Recommended policy actions and their impact pathway 

Barrier Policy Action Impact Pathway 

Information 
and 
implementation 
complexity 
barriers 

2.1 Collate and disseminate 
knowledge from pilot 
buildings 

2.2 Prepare guides and 
terminology for digital 
infrastructure and data 
management practices 

3.1 Maintain a centralised expert 
team to support agencies 

3.2 Invest in digitalisation 
technology in government 
buildings 

4.1 Engage the research sector 
in testing, analysis, 
knowledge sharing and 
developing tools and 
standards 

4.2 Provide funding and test 
buildings to help innovators 
develop and commercialise 
new smart products 

5.1 Provide co-investment grants 
or tax incentives 

Industry requested more information to reduce technical and 
investment uncertainty - particularly in the form of case-
studies and real-world evidence of successful smart 
technology implementations. 

This is best achieved by providing grant funding for case-
studies and pilot implementations (Action 4.2, Action 5.1) at 
scale.  Funding for these case studies should be contingent 
on thorough knowledge sharing using independent research 
bodies (Action 4.1).  Knowledge should be consolidated and 
shared through established professional channels, with 
media tailored to the needs of decision makers (Action 1.1).  
Where possible knowledge should be synthesised into 
relevant guides and standards that de-risk implementation 
(Action 1.2). 

Government can play a key role in creating these information 
resources by investing in digitalisation technology across its 
own building portfolio (Action 3.2) and sharing the resulting 
knowledge.  Government should recruit a specialist 
centralised team with digitalisation expertise (Action 3.1), to 
support (de-risk) implementation in its own buildings, and to 
ensure that there is appropriate expert knowledge sharing.  

The NYSERDA ‘Real Time Energy Management’ (RTEM) 
Program is an example of a successful knowledge sharing 
program. The RTEM Program provided a cost-share subsidy 
on systems, delivered through a panel of ‘RTEM Qualified 
Vendors’. The technology was implemented in over 1,200 
buildings covering ~27.5million m2 of building floor area. 
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Barrier Policy Action Impact Pathway 

Interoperability 
and data 
access barriers 

1.2 Prepare guides and 
terminology for digital 
infrastructure and data 
management practices 

2.1 Use construction codes to 
require new buildings to 
achieve minimum ’digital 
ready’ levels. 

2.2 Use ‘digital ready’ standards 
and criteria to establish a 
certification system for 
recognizing achievement of 
‘digital ready’ status. 

2.3 Reward achievement of 
‘digital ready’ in a relevant 
rating scheme and/or as 
eligibility criteria for an 
incentive mechanism. 

3.3 Adopt ‘digital ready’ green 
lease clauses: 

6.1 Clarify consumer data rights 
regarding energy data 

6.2 Regulate energy data to be 
collected, use of standard 
data collection formats and 
how data can be shared 

6.3 Provide data stewardship/ 
data-hub services: 

8.2 Require demand-response 
readiness in MEPS for major 
ap-pliances 

8.5 Establish a market 
operations platform to 
support DER from Grid 
Interactive Buildings 

Virtually all studies on industry barriers point to issues 
relating to proprietary systems that are incompatable and/or 
unable to provide requisite data.  Industry requested more 
standardisation and greater clarity on the specific data that 
systems must be able to provide. 

Standardisation begins with the use of common language.  
This can be achieved by publishing guides with clear 
terminology to describe best practice digitalisation concepts 
(Action 1.2).  These concepts can be further enshrined as 
standards and/or requirements specifications. Industry 
adoption would then be driven by including these 
requirements in construction codes (Action 2.1), 
certification/rating schemes (Action 2.2), incentive schemes 
(Action 2.3) and/or mandatory equipment specifications 
(Action 8.2). 

Government can play a key role in driving critical mass 
industry adoption of relevant voluntary schemes by, for 
example, adopting digital ready clauses for its own buildings 
(e.g. through ‘green-leases’ (Action 3.3)).  

Relevant rating schemes, incentive schemes and/or markets 
will require certain data inputs.  Regulatory support should 
be given, to ensure that these data inputs are available as 
standard (Action 6.1, Action 6.2), and not subject to privacy 
concerns.   

Government operated data platforms (linked to relevant 
government schemes) can play a key role in supporting 
efficient and scalable collection of standard data from 
industry (Action 6.3, Action 8.5).  

The Green Button initiative is an example of a successful 
data sharing mechanism, that is providing over 60 million 
homes and businesses with secure access to their own 
energy information in a standard consumer-friendly and 
computer-friendly format. It can be used by consumers to 
choose their preferred retailer and to access energy saving 
advice through third-party companies and Apps. 

Center Denmark is an example of a not-for-profit 
independent company, providing digital infrastructure and 
data-stewardship services that support innovative new data-
driven solutions.  In partnership with Danish energy utilities, 
Center Denmark curates a data platform with daily energy 
data from more than 200,000 Danish households. 
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Barrier Policy Action Impact Pathway 

Economic and 
first cost 
sensitivity 
barriers 

2.3 Reward achievement of 
‘digital ready’ in a relevant 
rating scheme and/or as 
eligibility criteria for an 
incentive mechanism. 

3.3 Invest in digitalisation 
technology in government 
buildings 

5.1 Provide co-investment grants 
or tax incentives. 

5.2 Recognise EMIS technology 
in performance-based 
energy savings schemes. 

5.3 Authorise M&V 
methodologies and 
automated tools: 

8.1 Reform electricity market 
rules to encourage 
participation of DER from 
Grid Interactive Buildings 

8.3 Place obligations on retailers 
to support customers to 
deliver demand flexibility 
services 

8.4 Catalyse the market by 
acquiring a target amount of 
DER from Grid Interactive 
Buildings: 

Despite proven short payback-times (in various scenarios), 
industry is seeking greater investment certainty and greater 
financial recognition for the range of benefits that 
digitalisation can bring across diverse use-cases. 
Particularly, there should be a level-playing field for grid 
integrated buildings to be able to provide grid support 
services. 

Competitive markets should be established to drive efficient 
energy management outcomes through digitalisation.  
Artificial barriers that prevent demand management 
resources from participating in energy markets should be 
removed (Action 8.1). Certificate Schemes (Action 5.2, 
Action 8.3) are a proven mechanism with high benefit to cost 
ratios.  Certificate schemes can be designed to achieve a 
target amount of digitally enabled DER from Grid Interactive 
Buildings, as the intended policy outcome (Action 8.4)   

Energy management incentive schemes will often need 
measurement and verification (M&V) to quantify and reward 
actions, in a performance-based way.  Government-
approved, digitally-automated M&V tools should be provided 
to industry - to streamline participation in markets and 
schemes (Action 5.3). 

While industry felt that digitalisation products and services 
can already compete without subsidies, industry adoption 
could be accelerated (in the short term) through direct 
incentives (Action 5.1, Action 2.3) and through mandated 
adoption in government buildings (Action 3.3) 

The NSW Peak Demand Reduction Scheme is an example 
of an innovative certificate scheme that aims to reduce peak 
electricity demand (rather than annual demand).  By shifting 
the time when electricity is used, it can support more 
renewable energy generation in the system, and help 
households and businesses in NSW save around $1.2 billion 
between 2022 and 2040. 

Workforce 
skills and 
capacity 
barriers 

3.1 Maintain a centralised expert 
team to sup-port agencies 

4.1 Engage the research sector 
in testing, analysis, 
knowledge sharing and 
developing tools and 
standards 

7.1 Support digital training 
across the property sector. 

7.2 Create incentive strategies 
for attracting IT talent into 
the property sector 

Industry consistently identified workforce shortages and 
difficulty recruiting in areas associated with digitalisation. 
There is significant competition for talent with other sectors 
of the economy.  Necessary skills in both consumer IT 
technologies and industrial OT technologies are less 
common. 

Government should develop an education and training 
agenda for improving digital skills in the property industry 
(Action 7.1, Action 7.2).  Government can help improve focus 
on these skills by establishing digitalisation centres of 
excellence in both academia (Action 4.1) and government 
facilities management (Action 3.1). 

The UK Building Energy Management Systems Controls 
Engineer apprenticeship is an example of a training program 
designed to address the industry-wide shortage of BMS 
Controls Engineers. Commencing in 2021, it provides a 
comprehensive program of learning, delivered in partnership 
between the Building Controls Industry Association, and 
national training providers.   
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7. Conclusions 

7.1 Summary of findings 

The IEA-EBC Annex 81 ‘Data-Driven Smart Buildings’ initiative explored the use of digitalisation, as an 

enabling tool for improving energy performance in non-residential buildings.  Subtasks in the Annex focused 

on both (i) data analytics and artificial intelligence software applications (for improving energy productivity) 

and (ii) the digital (IT) infrastructure necessary to underpin these software applications. 

Annex81 project partners collectively agreed that:  

A Data-Driven Smart Building is a building that uses digitalisation technologies to dynamically 

optimise its operation, where optimisation objectives typically relate to site energy use, IEQ, 

and occupant experience. 

Ideally, it is sufficiently connected and integrated with markets and processes, that it can 

adaptively respond to externalities and changing conditions (e.g. weather, electricity prices, 

energy supply constraints, equipment maintenance, etc). Ideally, it has sufficient memory of 

past events, and ability to anticipate future impacts, that it can select an informed course of 

action for achieving higher-level objectives – reminiscent of human intelligence. 

To achieve this vision, a Data-Driven Smart Building utilises both live and historical data from 

relevant sensors, IoT equipment, mobile devices, and other sources, to provide situational 

awareness for informed decision-making. Achieving optimisation objectives will often benefit 

from advanced supervisory-level automation, driven by computational analysis (e.g. Machine 

Learning, AI, etc) applied to available data. 

Access to data is core to the success of AI applications in smart buildings. Data can be exchanged locally 

between devices on-premises. However, data accessibility (for potential users) is vastly improved by using 

cloud technology.  The cloud enables a wider range of both on and off-premises data sources to be analysed 

together.  The cloud also enables information to be efficiently distributed to relevant people via remote 

personal computers and mobile devices 

7.1.1 Data and Digital Infrastructure 

The generalised digital infrastructure, that Annex 81 considers suitable for implementing data-driven smart-

building solutions, includes the following ‘layers’ in a software/hardware stack: 

• Device & Systems Layer: In this layer, relevant data sources (from the equipment and sensors in 

the building) supply data to an on-premises data acquisition server via local wired or wireless 

protocols. 

• Network Layer: In this layer, data is transmitted to a central cloud data platform (the data layer) via 

suitable communications gateway devices.  Much of the cyber security requirements of smart 

buildings, are dealt with in the network layer.  

• Data Layer (implemented as a data platform): In this layer (i) data is transposed and consolidated 

into common formats, (ii) data is stored in a structured queryable data base, and (iii) standardised 

interfaces are provided to make data accessible to software services (applications). 

• Application Layer: This layer is hypothesized to be somewhat analogous to the App Store on a 

mobile device.  The building owner would simply download their preferred services, and the software 

would self-configure to deliver the desired service. 

The purpose of this software/hardware stack is to create a highly flexible digital infrastructure, that gives the 

building owner control over their digital resources, and access to 3rd party software services. 
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Core to the success of this digital infrastructure is interoperability. Interoperability issues relate to both (i) 

device-level communications (avoiding proprietary communication protocols) and (ii) the extent of 

informational/semantic context that is attached to the sources of data (ensuring sufficient metadata is 

available to give meaning to the data sources).  

At a philosophical level, building owners should aspire to apply the FAIR data principles. That is, data is most 

useful when it is Findable, Accessible, Interoperable and Re-useable (FAIR).   

Metadata – “data about data” – is used to organize the storage of collected data.  It is also used by relevant 

software applications to automatically identify and retrieve data for processing. Utilising metadata is a key 

part of the FAIR data principles. Metadata schemas allow this to be done in a standardised way.  

Metadata schemas are organisational structures for assigning metadata information to data sources. 

Metadata schemas standardise what information should be captured, and in what format. They provide a 

standardised structure for storing data that is independent of the choice of vendor or protocol, architecture 

and composition of building, or choice of data-driven consumers and processes. 

While metadata schemas provide the general framework for organising information about a given building, 

the schema is not, in itself, the information about any given building. The actual metadata about a specific 

individual building is contained in a metadata model.   

When deciding which metadata schema to adopt (for the data-layer), various characteristics and 

implementation factors should be considered.  These include 

• Structure of the metadata models that will be created 

• Vocabulary, organization and completeness and strictness/rigor of the metadata schema 

• Alignment with other metadata schemas 

• Impact on smart building software architecture  

• Required tooling / software support / expertise  

• Model creation / bootstrapping / model maintenance 

These considerations are discussed in Section 2.2.1.  

Unfortunately, given the current low level of industry maturity, the process of creating a metadata model for 

a building can be challenging.  It may not be clear how much modelling detail is required, to achieve the 

desired practical outcomes.  Furthermore, tools for automating the process of validating a metadata model 

are in their infancy. 

Data governance can also restrict the ability to share data with energy productivity analytics software. 

Licences may be required to access datasets owned by third parties (under copyright).  Careful consideration 

should also be given to the possibility that data could be personal data. Six legal bases are provided under 

the European GDPR for sharing personal data. Even if there is a basis for sharing personal data, such sharing 

should be done with adequate protections. The Five Safes Framework can be used to identify protective 

measures for safeguarding personal data.  The more sensitive the personal data, the stronger the protections 

will need to be. 

The data-layer – which enshrines relevant interoperability and data governance considerations – is ultimately 

implemented as a data platform. In different contexts/applications the data platform could be called an IoT 

platform, an Energy Management Information System (EMIS) or Distributed Energy Resource Management 

System (DERMS).   

Acquisition of a data platform is a significant strategic decision for the building owner. Key considerations for 

the building owner include (i) maintaining sovereignty over their data and (ii) avoiding vendor lock-in. There 

are various highly capable independent companies offering data platform services via a Platform-as-a-

Service (PaaS) business model.  The functionalities of some of these platforms, including some relevant 

government operated platforms, are reviewed in Section 2.4. 
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With access to a data platform, a building owner must decide what data to collect. It is generally 

acknowledged that, while there is no shortage of data that could be collected, it can be surprisingly hard to 

find the data that is needed.  

By way of example, obtaining data for calculating key performance indicators (for benchmarking building 

performance) can be surprisingly difficult.  Annex 81 conducted a review of building performance KPIs and 

their likely efficacy.  KPIs were clustered against four target outcomes/ impact-areas; (i) Occupant-centric 

KPIs, (ii) Building Smart Technology KPIs, (iii) Building Energy Saving and Maintenance KPIs, and (iv) 

Energy Flexibility KPIs. The literature review identified 60 occupant-centric KPIs, 40 KPIs for transfer 

learning, 274 KPIs for building energy and maintenance, and 77 KPIs for building-to-grid interaction - 

resulting in a total of 451 KPIs. 

A survey of 65 stakeholders found that KPIs that relate to occupant needs are typically prioritized, followed 

by KPIs relating to a building's energy efficiency and operation.  Understandably, least concern was given to 

KPIs relating to electricity grid requirements. 

A comprehensive evaluation was performed to ascertain the feasibility of computing various of these KPIs, 

across five case-study office buildings (four located in the Netherlands and one in Switzerland). The analysis 

used historical BMS data and focused particularly on occupant-centric and energy flexibility metrics. On 

average, only around one-quarter of the KPIs could be reliably calculated for the case study buildings with 

the available data. 

• For occupant-centric KPIs: Some key considerations influencing the calculation of KPIs included (i) 

input data quality, (ii) unrepresentative spatial distribution of sensors, (iii) sampling frequency and 

temporal mismatches, and (iv) methods of aggregation/ averaging.  

• For demand flexibility KPIs: Across 16 flexibility related datasets, there was a poor match between 

required data (for calculating KPIs) and available data. 

Annex 81 participants interviewed leading industry practitioners, to further understand industry pain points 

and aspirations.  Improving data quality and data management practices was seen as one of the key actions 

required to foster the spread of data-driven smart buildings. 

Further details on these industry perspectives are presented in Section 3.2. 

7.1.2 Energy Productivity Software Applications 

Once suitable quality data is available and accessible, it is possible to deploy data-driven energy productivity 

software applications.   

Some relevant software applications include (i) Trend Analysis using monthly energy bill data, (ii) Data 

Analytics using more fine-grained real-time energy (and sub) meter data collection to analyse equipment 

consumption, (iii) Equipment Fault Detection and Diagnosis (FDD) using sensor data, heating, ventilation, 

and air-conditioning (HVAC) equipment data and energy meter data, to identify problems with equipment 

operating patterns (iv) Advanced Supervisory Controls that can override static control set-points to take 

advantage of forecast knowledge (e.g. energy price forecast data and/or weather forecast data), and (v) Grid 

Integrated Control of Buildings, where buildings manage demand in response to requests (e.g. price signals) 

from energy utilities or market operators. 

Annex 81 participants conducted research investigations and explored the state-of-the-art in relation to the 

fields of Equipment Fault Detection and Diagnosis (FDD), Advanced Supervisory Controls and Grid 

Integrated Control of Buildings 

Fault Detection and Diagnosis (FDD) software is used to identify and diagnose faults (problems) in the 

systems and equipment operating in a building. FDD utilizes specialized algorithms to analyse data from 

sensors and equipment to identify and pinpoint the problems.  This can be used by facilities managers and 

contractors to assist with maintenance and repair of installed equipment.   
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Traditional FDD uses logical if/then rules and decision trees. In contrast, data-driven FDD is software that is 

trained on ‘ground truth’ data using machine learning or multivariate statistical analysis methods. The data-

driven algorithms learn what normal/good operation is and can then detect when something is deviating from 

this desired operation. 

Across numerous buildings FDD software services have been shown to reduce energy consumption by 

around 9%, on average, with typical paybacks of two-years in portfolio implementations. 

A literature review on data-driven FDD found that, while many data-driven methods have been used, the 

relative performance of the various algorithmic methods have not been adequately compared. The review 

also found that, in large buildings, the focus of FDD research has generally been on Air Handling Unit – 

Variable Air Volume (AHU-VAV) systems, fan coil units (FCU), chillers, and boilers.  Among the papers re-

viewed, FDD methods were developed using either (i) laboratory experimental data (48%), (ii) simulation 

data (20%), or (iii) real building data (32%). 

Some of the identified ongoing focus areas and challenges – required for further technical and market devel-

opment of data-driven FDD, include:  

• Real-Building Deployment 

• Performance Evaluation, Benchmarking, and Fault Impact Analysis 

• Scalability and Transferability 

• Interpretability 

• Cyber Security and Data Privacy 

• User Experience 

A persistent challenge for ongoing development of FDD is a lack of common datasets and algorithm test 

methods. These are essential to support benchmarking of new algorithms. A database of FDD datasets was 

created to address this gap. It includes data from 7 HVAC systems, with 257 fault cases (at different severity 

levels), and 8 billion data points. 

Model Predictive Control (MPC) software uses a suitable mathematical model (digital twin) of the building 

and its systems, to provide forecasts of how the building will behave over the forecast future time horizon.  

This allows a supervisory ‘look-ahead’ controller to schedule equipment in advance, to optimise for comfort 

and energy savings.  MPC is useful in virtually any situation where knowledge of the future allows for better 

decision-making. 

Serale et al. (2018) conducted a review of the various implementations of MPC reported in the literature. 

They found that MPC implementations gave savings ranging from 0% to 40%. 

A related alternative data-driven supervisory control approach is based on Reinforcement Learning (RL).  

The RL approach has the potential to avoid the need for a control-oriented model and the need for supervised 

learning of building performance.  It does this by using a more trial-and-error based approach - that explores 

the state-space to find the control action (policy function) that maximises the given reward function. The 

difficulty for RL approaches is in obtaining sufficient data to explore the state-space and derive an appropriate 

control policy. 

A persistent challenge for ongoing development of MPC and RL methods is a lack of common datasets and 

benchmarking tools for comparing the performance of alternative methods. Six high quality datasets, from 

real-world buildings, were created to address this gap.  An innovative test environment (the Building 

Optimisation Testing (BOPTEST) framework) was used to conduct five benchmarking studies relating to 

alternative control algorithms.  The BOPTEST framework has been developed to test control algorithms on 

a high-fidelity building emulator (rather than a real-world building).  This avoids the practical issues of 

engaging with building owners and operators. It also creates a level playing field for comparing different 

algorithms. 
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All studies found that the MPC and RL controllers substantially out-performed the test building’s conventional 

rule-based control strategies, in terms of providing better thermal comfort for occupants (lower Kelvin Hours 

outside of the target comfort thresholds) and reducing energy costs by around 20%. The best MPC solutions 

typically outperformed the best RL solutions. 

These results are from a relatively small sample of studies.  Further benchmarking research is required to 

build up the evidence base to cover more buildings, different approaches and different design choices for 

data-driven control. 

Grid Integrated Control of Buildings software is used to control/modulate energy consumption, in order 

to provide demand flexibility services to local energy grids. 

Annex 81 research focussed on (i) identifying definitions and KPIs for building energy flexibility assessment, 

and (ii) developing data-driven methods for calculating these KPIs.  Research utilised metadata/ semantic 

principles to standardize the definitions and the computation of demand-flexibility related KPIs. 

A literature review was conducted. 53% of the literature review studies considered flexibility at single-building 

level and 41% considered flexibility at building cluster level. Only 26% of the studies involved real 

measurements of flexibility, with 65% relying on numerical simulations. The review highlighted two challenges 

involved in quantifying energy flexibility, being (i) the lack of robust data-driven approaches for generating 

baseline load profiles (i.e. when demand response is not activated) and (ii) the lack of ‘baseline-free KPIs’ 

that can be computed without need for baseline or reference scenario inputs. 

Some methods for generating a baseline include (i) Control group methods, (ii) Averaging methods (e.g. 

similar day look-up approach or ‘X of Y’), (iii) Regression models, (iv) Shallow machine learning methods, (v) 

Deep machine learning methods, and (vi) Hybrid methods. 

A persistent challenge to ongoing development of Grid Integrated Control of Buildings applications is a lack 

of datasets. 330 datasets were identified in the literature review as potentially of interest.  Of these, only 16 

were deemed adequate, with proper descriptions and open access availability. 

Annex 81 participants developed an open-source Python toolbox, to help stakeholders calculate relevant 

KPIs and assess the demand response and energy flexibility available from buildings. The Python package 

leverages the EFOnt ontology to apply semantic principles, so that KPI definitions and computation is 

standardised. 

7.1.3 Case Studies 

A focus of Annex 81 research was to collect case studies of data-driven smart buildings.  The aim of this 

work was to (i) gather evidence from real-world implementations, (ii) capture stakeholder perspectives and 

context, (iii) identify and summarise business models, (iv) highlight relevant applications and use-cases, and 

(v) document specific technologies and technology stacks. 

A standardised two-page template was developed to enable case study information to be gathered 

consistently.  Eighteen case studies were collected and made available through an online repository, 

representing a diverse range of building types, applications, and locations across thirteen countries. 

Across all case studies, lessons learned revolved around four core themes: i) data quality and management, 

ii) technology specification and implementation, iii) stakeholder engagement, and iv) governance, 

compliance, and legal oversight. 

Details of these lessons learnt are provided in Section 5.3. 

7.1.4 Growing the Data-Driven Smart Buildings Industry 

A core objective of the Annex 81 ‘Data-Driven Smart Buildings’ initiative was to support industry growth and 

the adoption of digitalisation technology in buildings. Supporting this objective, Annex 81 work focussed on: 

1. Stimulating innovation by running two data-driven artificial intelligence (AI) competitions, and 

2. Consulting with industry, to identify barriers and to develop policy solutions that could overcome the 

identified barriers.   
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Crowd-sourced data science competitions are a powerful tool for developing innovative machine learning 

solutions. Competition platforms (e.g., Kaggle, AI Crowd and others) can be used to cost-effectively harness 

the collective intelligence of global participants. They also provide valuable learning opportunities for 

participants to sharpen their skills and to contribute to solving real-world challenges. 

With funding support from ERA-Net Smart Energy Systems, the ADRENALIN (dAta-DRivEN smArt 

buiLdINgs) project was a consortium of 12 project partners (linked to Annex 81).  The consortium organised 

two AI competitions.  

1. The ADRENALIN Load Disaggregation Challenge required competitors to develop machine learning 

or statistical models that could take a building’s site-level energy consumption meter data and 

disaggregate it - to quantify the energy consumption of the building’s HVAC-related loads.  

Successful solutions could avoid the need for expensive submetering of HVAC equipment. The 

challenge attracted 47 participants and resulted in 13 valid submissions. 9 submissions successfully 

exceeded the minimum performance threshold set by the organisers. 

2. The BOPTEST Smart Building HVAC Control Challenge required competitors to develop control 

algorithms that activate the flexibility potential of a building’s HVAC system - based on variable cost 

signals, while not compromising indoor air quality. The winning entry would have the lowest weighted 

score (compared with the price ignorant baseline controller).  The challenge attracted 22 participants 

and resulted in 5 valid submissions. 4 submissions successfully exceeded the minimum performance 

threshold set by the organisers. 

Each winning team received a prize of 10,000 euros, distributed in two instalments: the first 5,000 euros 

awarded immediately upon announcement of the winners and the second 5,000 euros paid after a three-

month knowledge transfer period with the sponsoring companies. 

Various barriers studies and solution roadmaps have previously been conducted, with the aim of 

encouraging adoption of digitalisation (or digitalisation-based applications).  Annex 81 participants conducted 

significant additional industry consultation research, to further understand industry pain-points and to identify 

policy actions that government could adopt, as a means of supporting industry growth. 

Barriers identified, typically relate to (i) interoperability, (ii) privacy and cybersecurity, (iii) uncertain costs and 

benefits (poorly articulated business case), (iv) implementation complexity and (v) culture, trust and related 

stakeholder perception issues. 

Based on stakeholder feedback, a number of solutions were identified.  They were grouped under the 

following themes, and validated through industry consultation. 

Theme 1: Provide Information – to reduce complexity and information asymmetry for buyers. 

Theme 2: Establish ‘digital ready’ certification – to standardise solutions and recognise achievement 

Theme 3: Lead by example – to provide a cohort of early adopters that catalyse the market. 

Theme 4: Support researchers and innovators – to catalyse a wider range of product offerings, increase 

industry maturity, and provide independent validation of the benefits of digitalisation.   

Theme 5: Incentivise EMIS technology – to improve the return on investment from the technology. 

Theme 6: Reduce data sharing risk – to improve certainty and manage possible compliance issues. 

Theme 7: Build workforce skills and capacity – to be able to deliver the services at scale. 

Theme 8: Integrate buildings into the electricity system – to prioritise the clean energy transition. 

A ‘Policy Package’ (plan on a page) was developed for driving adoption of digitalisation as a means of 

optimising energy use in buildings. Recommended actions to address the main barriers are: 
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Information and implementation complexity barriers:  

Government should fund case-studies and pilots (Action 4.2, Action 5.1).   

• Funding for case studies should be contingent on thorough knowledge-sharing using independent 

research bodies (Action 4.1).   

o Knowledge should be consolidated and shared through established professional channels, with 

media tailored to the needs of decision makers (Action 1.1).   

o Where possible, knowledge should be synthesised into relevant guides and standards that de-

risk implementation (Action 1.2). 

• Government can play a key role in creating information resources by investing in digitalisation 

technology across its own building portfolio (Action 3.2) and sharing the resulting knowledge. 

o Government should recruit a specialist centralised team with digitalisation expertise (Action 

3.1), to support (de-risk) implementation in its own buildings, and to ensure that there is 

appropriate expert knowledge sharing. 

Interoperability and data access barriers:  

Government should publish guides with clear terminology to describe best practice digitalisation concepts 

(Action 1.2).  Standardisation begins with the use of common language.   

• These concepts can be further enshrined as standards and/or other requirements or specifications.  

o Industry adoption can then be driven by including these requirements in construction codes 

(Action 2.1), certification/rating schemes (Action 2.2), incentive schemes (Action 2.3) and/or 

mandatory equipment specifications (Action 8.2).  

o Relevant rating schemes, incentive schemes and/or markets will require certain data inputs.  

Regulatory support should be given, to ensure that these data inputs are available as standard 

(Action 6.1, Action 6.2), and access is not subject to or commercial and/or privacy constraints. 

o Government operated data platforms (linked to relevant government schemes) can play a key 

role in supporting efficient and scalable collection of standard data from industry (Action 6.3, 

Action 8.5). 

• Government can play a key role in driving critical mass industry adoption of standards (and relevant 

voluntary schemes) by, for example, adopting digital ready clauses for its own buildings (e.g. through 

‘green-leases’ (Action 3.3)).  

Economic and first cost sensitivity barriers:   

Government should support competitive markets that can drive efficient energy management outcomes 

through digitalisation.  Artificial barriers that prevent demand management resources from participating in 

energy markets should be removed (Action 8.1).  

• Certificate Schemes (Action 5.2, Action 8.3) are a proven policy mechanism with high benefit to cost 

ratios.  Certificate schemes should be designed to achieve a target amount of digitally-enabled DER 

in Grid Interactive Buildings, as the intended policy outcome (Action 8.4)   

o Energy management incentive schemes will often need measurement and verification (M&V) 

to quantify and reward actions, in a performance-based way.  Government-approved, digitally-

automated M&V tools should be provided to industry - to streamline participation in markets 

and schemes (Action 5.3). 

• While industry felt that digitalisation products and services can already compete without subsidies, 

industry adoption could be accelerated (in the short term) through direct incentives (Action 5.1, 

Action 2.3) and through mandated adoption in government buildings (Action 3.3). 
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Workforce skills and capacity barriers:  

Government should develop an education and training agenda for improving digital skills in the property 

industry (Action 7.1, Action 7.2).   

• Government can help improve focus on these skills by establishing digitalisation centres of 

excellence in both academia (Action 4.1) and government facilities management (Action 3.1). 

7.2 IEA-EBC Annex 81 Resources  

A number of resources have been developed or extended as part of the work of Annex 81 ‘Data-Driven Smart 

Buildings’. Readers interested in exploring these findings in more detail, or utilising the various research tools 

and data resources can go to the following online websites. 

• Annex 81 ‘Subtask A report’ on digital infrastructure for data-driven smart buildings: 

https://annex81.iea-

ebc.org/Data/publications/IEA%20Annex%2081%20Subtask%20A%20Report.pdf   

• Annex 81 ‘Subtask B report’ on model predictive control 

• Annex 81 ‘Subtask C report’ on data-driven smart building software applications  

• Report ‘Data-Driven Smart Buildings State of the Art’: https://annex81.iea-

ebc.org/Data/publications/Annex%2081%20State-of-the-Art%20Report%20(final).pdf  

• Report ‘A survey of metadata schemas for Data-Driven Smart Buildings’: https://annex81.iea-

ebc.org/Data/publications/Survey%20of%20meta-data%20schemas%20(final)1.pdf  

• Report ‘A Data-Sharing Guideline for Buildings and HVAC Systems’: https://annex81.iea-

ebc.org/Data/publications/IEA%20Annex%2081%20Activity%20A1%20-

%20A%20Data%20Sharing%20Guideline%20for%20Buildings%20and%20HVAC%20Systems%2

0(final)2.pdf  

• Report ‘Opportunities for Government Leadership on Data-Driven Smart Buildings’: 

https://annex81.iea-

ebc.org/Data/publications/Opportunities%20for%20Government%20Leadership%20on%20Data-

Driven%20Smart%20Buildings.pdf   

• Report ‘ A Guide on Data Platforms for Data-Driven Smart Buildings”: https://annex81.iea-

ebc.org/Data/publications/A%20Guide%20on%20Data%20Platforms%20for%20Data-

Driven%20Smart%20Buildings%20(final)1.pdf  

• Building Data Directory: https://buildingdatadirectory.org/ 

• FDD Dataset Repository: https://faultdetection.lbl.gov/  

• MPC Dataset Repository: https://data.mendeley.com/datasets/xztfbtsgys/3  

• Building to Grid Dataset Repository: https://aau-ef-kpi-web-app.build.aau.dk/  

• BOPTEST Framework: https://boptest.net  

• Energy-Flexibility-KPIs software tool: https://github.com/HichamJohra/energy_flexibility_kpis  

• Data-Driven Smart Buildings Case-Study Repository: https://datasmartbuildings.org/       

 

In addition to these deliverables, the Annex 81 website includes a catalogue of various articles produced by 

Annex 81 participants. The web page can be found at https://annex81.iea-ebc.org/articles  
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